
Reference Manual

Object properties and APIs

CEMS 7.2.0

TABLE OF CONTENTS

Introducing the Reference Manual....................1

Introduction ... 1-1

Opening a sample project from the Studio.................................... 1-2

Convertigo Objects ..2

Common ... 2-2

Main objects... 2-3

Project .. 2-4

Test Case ... 2-8

Style sheet ... 2-12

Pool .. 2-19

Variables.. 2-23

Requestable variables .. 2-24

Request single-valued variable .. 2-25

Request multi-valued variable .. 2-38

HTTP single-valued variable (Requestable variables) 2-51

HTTP multi-valued variable (Requestable variables) 2-64

Statement variables .. 2-77

HTTP single-valued variable (Statement variables) 2-78

HTTP multi-valued variable (Statement variables) 2-87

Step variables ... 2-90

Call single-valued variable ... 2-91

Call multi-valued variable ... 2-106
i

TABLE OF CONTENTS
Test Case variables .. 2-117

Test single-valued variable .. 2-118

Test multi-valued variable .. 2-126

References .. 2-134

Schema references... 2-135

Import XSD schema ... 2-136

Import WSDL schema .. 2-137

Include XSD schema .. 2-138

Import Project schema ... 2-139

Web Service references ... 2-140

Import web service ... 2-141

Mobile Application... 2-143

Main objects... 2-144

Mobile application .. 2-145

Platforms.. 2-151

Mobile Platforms... 2-152

Android ... 2-153

BlackBerry .. 2-155

BlackBerry 10 ... 2-157

iOS ... 2-159

Windows 8 .. 2-161

Windows Phone 7 .. 2-162

Windows Phone 8 .. 2-163

Sequencer... 2-164

Main objects... 2-165

Generic Sequence ... 2-166

Steps.. 2-177

Flow control steps... 2-178

jIf .. 2-179

jIfThenElse ... 2-180

IfExist ... 2-181

IfExistThenElse .. 2-185

IfIsIn ... 2-189

IfIsInThenElse .. 2-191
ii Reference Manual - CEMS 7.2.0

TABLE OF CONTENTS
jWhile ... 2-193

jDoWhile ... 2-194

Iterator .. 2-195

jIterator ... 2-200

Return (Sequencer) .. 2-204

jBreak ... 2-205

Serial .. 2-209

Parallel ... 2-210

IfFileExists .. 2-212

IfFileExistsThenElse ... 2-213

Javascript steps .. 2-214

Sequence JS .. 2-215

jSource ... 2-216

jSimpleSource .. 2-218

jException ... 2-222

XML steps... 2-226

Attribute (Sequencer) ... 2-227

jAttribute ... 2-232

Copy ... 2-234

Sort ... 2-235

Complex ... 2-237

Error structure .. 2-243

Element .. 2-246

jElement ... 2-249

Split .. 2-256

Transform ... 2-257

Count .. 2-258

Concat .. 2-259

Date/Time ... 2-264

Generate dates .. 2-265

Convertigo request steps.. 2-268

Call Transaction ... 2-269

Call Sequence .. 2-276

File management steps .. 2-279

Read XML .. 2-280

Read CSV .. 2-281
iii

TABLE OF CONTENTS
Write XML .. 2-283

Write CSV .. 2-285

Write binary from Base64 ... 2-287

Copy file ... 2-289

Duplicate file ... 2-290

Move file ... 2-291

Rename file .. 2-292

Delete file ... 2-293

Create directory .. 2-294

List directory ... 2-295

HTTP session management ... 2-296

Set authenticated user ... 2-297

Get authenticated user ... 2-299

Remove authenticated user ... 2-300

Get from session .. 2-301

Set in session ... 2-302

Others ... 2-303

Input variables .. 2-304

SMTP send .. 2-305

Push Notifications .. 2-322

Remove context ... 2-325

Process execute ... 2-326

Log (Sequencer) .. 2-328

Hash code .. 2-330

SAP... 2-331

Main objects... 2-332

SAP connector ... 2-333

SAP transaction ... 2-335

SAP logon transaction .. 2-340

SQL... 2-345

Main objects... 2-346

SQL connector ... 2-347

SQL transaction ... 2-352

CICS ... 2-360

Main objects... 2-361
iv Reference Manual - CEMS 7.2.0

TABLE OF CONTENTS
CICS connector .. 2-362

CICS transaction .. 2-363

Web services .. 2-364

Main objects... 2-365

HTTP connector ... 2-366

Proxy HTTP connector ... 2-372

HTTP transaction ... 2-376

XML HTTP transaction ... 2-382

JSON HTTP transaction ... 2-392

Web... 2-406

Main objects... 2-407

HTML connector ... 2-408

HTML transaction ... 2-418

HTML screen class .. 2-430

Criteria ... 2-436

XPath ... 2-437

URL (Web) ... 2-442

Extraction rules .. 2-443

Web clipping extraction rules.. 2-444

Web Clipper ... 2-445

Add link .. 2-459

Add button .. 2-464

Add text .. 2-472

Add image .. 2-473

Delete nodes .. 2-479

Data extraction rules... 2-484

Node ... 2-485

Node list ... 2-487

Record (Web) ... 2-490

Table (Web) ... 2-495

Text .. 2-508

HTTP headers .. 2-511

Page URL ... 2-514

Print screen .. 2-517

Statements... 2-519
v

TABLE OF CONTENTS
Handler statements... 2-520

Handler ... 2-521

Screen class entry handler ... 2-525

Screen class exit handler ... 2-532

Default entry handler .. 2-536

Default exit handler .. 2-541

Function ... 2-543

Flow control statements.. 2-547

Container (Web) ... 2-548

If ... 2-550

IfThenElse .. 2-554

While .. 2-555

Do while ... 2-558

Return (Web) .. 2-559

Break .. 2-564

Call function ... 2-567

IfXpathExists .. 2-572

IfXpathExistsThenElse ... 2-573

Javascript statements ... 2-574

Transaction JS ... 2-575

User input control statement... 2-578

Key action .. 2-579

Input HTML set value ... 2-582

Input HTML set selected .. 2-589

Input HTML set checked .. 2-596

Mouse action .. 2-601

Mouse action advanced ... 2-607

Create event ... 2-611

Input HTML set file ... 2-617

Browser control statements .. 2-619

Credentials ... 2-620

Browser property change ... 2-624

Navigation bar .. 2-630

Tab management ... 2-632

Cookies Get ... 2-633

Cookies Add ... 2-637
vi Reference Manual - CEMS 7.2.0

TABLE OF CONTENTS
Adopt client cookies ... 2-638

Inject JS in browser .. 2-639

Get URL ... 2-642

Get attachment ... 2-646

Others ... 2-652

HTTP upload request ... 2-653

HTTP request ... 2-656

Exception ... 2-663

Get nodes ... 2-668

Get text ... 2-675

Context Get .. 2-676

Context Set .. 2-680

Context Add text node .. 2-684

Log (Web) .. 2-687

Wait synchronization .. 2-691

Continue with Site Clipper .. 2-693

Recorder for Site Clipper .. 2-698

Legacy .. 2-706

Main objects... 2-707

Javelin connector ... 2-708

Javelin transaction ... 2-713

Javelin screen class ... 2-714

Default block factory ... 2-721

Criteria ... 2-723

Emulator technology .. 2-724

Empty screen ... 2-725

Find string .. 2-727

Regular expression (Legacy) ... 2-729

Extraction rules .. 2-732

Presentation.. 2-733

Style of blocks .. 2-734

Container (Legacy) ... 2-740

Common GUI components ... 2-747

Choice .. 2-748

Commands ... 2-755
vii

TABLE OF CONTENTS
Field/Text ... 2-762

Fields for VT emulators .. 2-771

Date .. 2-773

Panel .. 2-779

Separator ... 2-787

Record (Legacy) ... 2-793

Table (Legacy) ... 2-798

Button ... 2-809

Image ... 2-815

SNA GUI components .. 2-821

SNA commands ... 2-822

AS400 menu .. 2-831

Subfile .. 2-837

5250 extended objects ... 2-848

VDX GUI components .. 2-851

Videotex commands ... 2-852

Edit field ... 2-853

Menu .. 2-854

Block management ... 2-855

Merge blocks .. 2-856

Delete blocks .. 2-860

Split block ... 2-865

Trim spaces .. 2-869

Move blocks ... 2-873

Text handling .. 2-878

Letter case ... 2-879

Replace text ... 2-884

Translate text ... 2-889

Others ... 2-892

Tag name ... 2-893

Attribute (Legacy) ... 2-903

Split string to table .. 2-907

SiteClipper .. 2-908

Main objects... 2-909

Site Clipper connector .. 2-910

Site Clipper transaction .. 2-916
viii Reference Manual - CEMS 7.2.0

TABLE OF CONTENTS
Site Clipper screen class .. 2-923

Criteria ... 2-928

Request criteria... 2-929

URL (SiteClipper) ... 2-930

Request header .. 2-937

Response criteria.. 2-943

MIME type .. 2-944

Regular expression (SiteClipper) ... 2-948

Response header ... 2-954

Status-Code ... 2-958

Rules.. 2-963

Request rules.. 2-964

Add request header .. 2-965

Modify request header ... 2-973

Remove request header ... 2-982

Remove request cache headers .. 2-988

Request JS ... 2-989

Response rules... 2-990

Response JS .. 2-991

Add response header ... 2-992

Modify response header ... 2-1000

Remove response header .. 2-1009

Replace string .. 2-1015

Script injector ... 2-1022

CSS injector ... 2-1028

Rewrite location header ... 2-1034

Rewrite absolute URL .. 2-1039

Client instruction set value ... 2-1044

Client instruction set checked .. 2-1051

Client instruction click ... 2-1057

Remove response cache headers ... 2-1063

JavaScript Objects APIs3

Javelin object javadoc... 3-2

Fields detailed list .. 3-2
ix

TABLE OF CONTENTS
Methods detailed list .. 3-3

Context object ... 3-12

Context general presentation... 3-12

Definition... 3-12

Identification.. 3-12

Context object... 3-13

Context API documentation ... 3-13

Fields detailed list ... 3-14

Methods detailed list ... 3-15

Interesting methods in Context fields.. 3-18

Interfaces to Convertigo4

HTTP protocol interface to Convertigo.. 4-2

Convertigo URLs ... 4-2

General process ... 4-2

Convertigo requesters .. 4-3

Convertigo reserved parameters ... 4-6

Engine reserved parameters .. 4-7

Weblib reserved parameters... 4-11

Web service interface to Convertigo ... 4-14

SOAP web services ... 4-14

REST web services ... 4-15

Context state conservation .. 4-16

Convertigo Templating Framework5

Convertigo Templating Framework presentation 5-2

Objectives .. 5-2

Templating system... 5-2

Launching a Convertigo requestable .. 5-3

C8O call - Calling transactions or sequences........................ 5-3
x Reference Manual - CEMS 7.2.0

TABLE OF CONTENTS
Requestable call format .. 5-3

Requestable call and Variables .. 5-4

Call mode... 5-6

Call condition ... 5-7

Immediate action and call .. 5-8

Local cache on calls .. 5-9

Non C8O-requestable calls.. 5-11

Listening for a C8O requestable response 5-12

Listener concept .. 5-12

Listen condition.. 5-13

Data accumulation ... 5-14

HTML templating... 5-15

Different types of patterns.. 5-15

Templating patterns .. 5-15

Selecting patterns ... 5-17

Simple templating .. 5-18

Nested listeners ... 5-21

Conditional templating ... 5-23

CTF If.. 5-23

Negative if... 5-26

Several conditions .. 5-28

Iterative templating .. 5-28

Nested iterations.. 5-30

References use.. 5-33

Late rendering.. 5-38

Before rendering callback .. 5-42

After rendering callback ... 5-43

Inline templating... 5-44

Routing.. 5-46
xi

TABLE OF CONTENTS
Presentation... 5-46

Routing table.. 5-46

Internationalization framework6

Convertigo Internationalization Library ... 6-2

Objectives .. 6-2

Translation ... 6-2

Project architecture.. 6-2

Dictionary content ... 6-4

Translating .. 6-5

Translating HTML .. 6-5

Dynamically translating string or fragment in JavaScript 6-6

Translating string .. 6-6

Translating HTML fragment .. 6-6

Enable I18N and language configuration...................................... 6-8

Language detection and configuration.. 6-9

Automatic language detection .. 6-9

Manual language configuration... 6-9

General principle of language detection 6-10

Appendixes...A

Keycodes table ... A-2

Date format - Usable symbols... A-5

Convertigo paths variables - Usable symbols............................... A-6

Legacy emulator actions table .. A-8
xii Reference Manual - CEMS 7.2.0

LIST OF FIGURES

 Figure 1 - 1: Launching the New Project wizard ... 1-2

 Figure 1 - 2: Opening a sample project in New project wizard ... 1-3

 Figure 1 - 3: Selecting appropriate sample project ... 1-4

 Figure 1 - 4: Pop-up indicating a related project is missing .. 1-4

 Figure 1 - 5: Opening missing CWI sample project in wizard ... 1-5

 Figure 1 - 6: Reference Manual steps example project in Projects view 1-7

 Figure 2 - 1: Project - Documentation sample projects in Projects view 2-6

 Figure 2 - 2: Project - Configuration example ... 2-7

 Figure 2 - 3: Test Case - Configuration example .. 2-9

 Figure 2 - 4: Test Case - Test Case object in Projects view ... 2-9

 Figure 2 - 5: Test Case - Test Case object in test platform .. 2-10

 Figure 2 - 6: Test Case - Test Case execution result in test platform 2-11

 Figure 2 - 7: Style sheet - Transaction result with no stylesheet attached 2-13

 Figure 2 - 8: Style sheet - Transaction result with no stylesheet attached (zoom) 2-14

 Figure 2 - 9: Style sheet - Style sheet object in Projects view .. 2-15

 Figure 2 - 10: Style sheet - Configuration example .. 2-15

 Figure 2 - 11: Style sheet - Creating results.xsl file on project root folder 2-16

 Figure 2 - 12: Style sheet - Editing results.xsl file ... 2-16

 Figure 2 - 13: Style sheet - Transaction configuration example ... 2-17

 Figure 2 - 14: Style sheet - Transaction result displayed thanks to results.xsl stylesheet 2-18

 Figure 2 - 15: Pool - Pool object in Projects view ... 2-21
xiii

LIST OF FIGURES
 Figure 2 - 16: Pool - Configuration example ... 2-21

 Figure 2 - 17: Pool - Starting transaction variables property edition ... 2-22

 Figure 2 - 18: Pool - Connexions in Convertigo Server Administration 2-22

 Figure 2 - 19: Request single-valued variable - Configuration example 2-28

 Figure 2 - 20: Request multi-valued variable - Configuration example 2-29

 Figure 2 - 21: Request multi-valued variable - Default value property in Array editor 2-29

 Figure 2 - 22: Request single-valued and multi-valued variables - Sequence and Request variables
in Projects view .. 2-30

 Figure 2 - 23: Request single-valued and multi-valued variables - Sequence and variables in test
platform .. 2-31

 Figure 2 - 24: Request single-valued and multi-valued variables - Sequence and variables in test
platform after testing modifications ... 2-31

 Figure 2 - 25: Request single-valued and multi-valued variables - Sequence execution result in test
platform .. 2-31

 Figure 2 - 26: Request single-valued variable - Configuration example 2-33

 Figure 2 - 27: Request multi-valued variable - Configuration example 2-33

 Figure 2 - 28: Request single-valued and multi-valued variables - Sequence and Request variables
in Projects view .. 2-34

 Figure 2 - 29: Request single-valued and multi-valued variables - Sequence and variables in test
platform .. 2-35

 Figure 2 - 30: Request single-valued and multi-valued variables - Sequence and variables in test
platform after testing modifications ... 2-35

 Figure 2 - 31: Request single-valued and multi-valued variables - Sequence execution result in test
platform .. 2-35

 Figure 2 - 32: Request single-valued and multi-valued variables - Sequence and variables in test
platform after testing modifications ... 2-36

 Figure 2 - 33: Request single-valued and multi-valued variables - Sequence execution result in test
platform .. 2-36

 Figure 2 - 34: Request single-valued variable - Configuration example 2-42

 Figure 2 - 35: Request multi-valued variable - Configuration example 2-42

 Figure 2 - 36: Request multi-valued variable - Default value property in Array editor 2-43

 Figure 2 - 37: Request single-valued and multi-valued variables - Sequence and Request variables
in Projects view .. 2-43

 Figure 2 - 38: Request single-valued and multi-valued variables - Sequence and variables in test
platform .. 2-44
xiv Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 39: Request single-valued and multi-valued variables - Sequence and variables in test
platform after testing modifications ... 2-44

 Figure 2 - 40: Request single-valued and multi-valued variables - Sequence execution result in test
platform .. 2-45

 Figure 2 - 41: Request single-valued variable - Configuration example 2-46

 Figure 2 - 42: Request multi-valued variable - Configuration example 2-46

 Figure 2 - 43: Request single-valued and multi-valued variables - Sequence and Request variables
in Projects view .. 2-47

 Figure 2 - 44: Request single-valued and multi-valued variables - Sequence and variables in test
platform .. 2-48

 Figure 2 - 45: Request single-valued and multi-valued variables - Sequence and variables in test
platform after testing modifications ... 2-48

 Figure 2 - 46: Request single-valued and multi-valued variables - Sequence execution result in test
platform .. 2-48

 Figure 2 - 47: Request single-valued and multi-valued variables - Sequence and variables in test
platform after testing modifications ... 2-49

 Figure 2 - 48: Request single-valued and multi-valued variables - Sequence execution result in test
platform .. 2-49

 Figure 2 - 49: HTTP single-valued variable - Configuration example 2-55

 Figure 2 - 50: HTTP single-valued variable - HTTP Variable and parent transaction in Projects view
.. 2-56

 Figure 2 - 51: HTTP single-valued variable - HTTP Variable and parent transaction in test platform
.. 2-57

 Figure 2 - 52: HTTP single-valued variable - Updating variable value in test platformfor testing
.. 2-57

 Figure 2 - 53: HTTP single-valued variable - Transaction execution result in test platform 2-58

 Figure 2 - 54: HTTP single-valued variable - Transaction execution result in connector editor
.. 2-59

 Figure 2 - 55: HTTP single-valued variable - Configuration example 2-60

 Figure 2 - 56: HTTP single-valued variable - Variable object in Projects view 2-61

 Figure 2 - 57: HTTP single-valued variable - Connector editor .. 2-62

 Figure 2 - 58: HTTP single-valued variable - Connector editor after transaction execution 2-63

 Figure 2 - 59: HTTP multi-valued variable - Configuration example ... 2-68

 Figure 2 - 60: HTTP multi-valued variable - Default value property in Array editor 2-69

 Figure 2 - 61: HTTP multi-valued variable - HTTP Variable and parent transaction in Projects view
.. 2-69
xv

LIST OF FIGURES
 Figure 2 - 62: HTTP multi-valued variable - Transaction execution result in connector editor . 2-70

 Figure 2 - 63: HTTP multi-valued variable - HTTP Variable and parent transaction in test platform
.. 2-71

 Figure 2 - 64: HTTP multi-valued variable - Updating variable values in test platformfor testing
.. 2-71

 Figure 2 - 65: HTTP multi-valued variable - Transaction execution result in test platform 2-72

 Figure 2 - 66: HTTP multi-valued variable - Configuration example ... 2-73

 Figure 2 - 67: HTTP multi-valued variable - Default value property in Array editor 2-74

 Figure 2 - 68: HTTP multi-valued variable - HTTP Variable and parent transaction in Projects view
.. 2-74

 Figure 2 - 69: HTTP multi-valued variable - Connector editor .. 2-75

 Figure 2 - 70: HTTP multi-valued variable - Connector editor .. 2-76

 Figure 2 - 71: HTTP single-valued variable - HTML transaction with HTTP variable in Projects view
.. 2-81

 Figure 2 - 72: HTTP single-valued variable - Configuration example with default value 2-82

 Figure 2 - 73: HTTP single-valued variable - HTTP request statement with HTTP variable in
Projects view .. 2-83

 Figure 2 - 74: HTTP single-valued variable - Connector editor .. 2-84

 Figure 2 - 75: HTTP single-valued variable - Connector editor after transaction execution 2-85

 Figure 2 - 76: Call single-valued variable - Configuration example .. 2-94

 Figure 2 - 77: Call single-valued variable - Configuration example .. 2-95

 Figure 2 - 78: Call single-valued variable - Source of the article_no variable 2-95

 Figure 2 - 79: Call single-valued variable - Source of the keyword variable 2-96

 Figure 2 - 80: Call single-valued variable - Call Transaction steps with Call variables in Projects
view .. 2-97

 Figure 2 - 81: Call single-valued and multi-valued variables - Sequence and Call Sequence steps
in Projects view .. 2-98

 Figure 2 - 82: Call single-valued and multi-valued variables - Sequence execution result in
sequence editor .. 2-99

 Figure 2 - 83: Call single-valued variable - Configuration example with default value 2-100

 Figure 2 - 84: Call multi-valued variable - Configuration example with default value 2-100

 Figure 2 - 85: Call multi-valued variable - Default value property in Array editor 2-101

 Figure 2 - 86: Call single-valued variable - Configuration example with Source 2-102
xvi Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 87: Call multi-valued variable - Configuration example with Source 2-102

 Figure 2 - 88: Call multi-valued variable - Source of the firstNames variable 2-103

 Figure 2 - 89: Call single-valued and multi-valued variables - Call Sequence steps with Call
variables in Projects view ... 2-104

 Figure 2 - 90: Call single-valued and multi-valued variables - Sequence execution result in
sequence editor .. 2-105

 Figure 2 - 91: Call single-valued and multi-valued variables - Sequence and Call Sequence steps
in Projects view .. 2-109

 Figure 2 - 92: Call single-valued and multi-valued variables - Sequence execution result in
sequence editor .. 2-110

 Figure 2 - 93: Call single-valued variable - Configuration example with default value 2-111

 Figure 2 - 94: Call multi-valued variable - Configuration example with default value 2-111

 Figure 2 - 95: Call multi-valued variable - Default value property in Array editor 2-112

 Figure 2 - 96: Call single-valued variable - Configuration example with Source 2-113

 Figure 2 - 97: Call multi-valued variable - Configuration example with Source 2-113

 Figure 2 - 98: Call multi-valued variable - Source of the firstNames variable 2-114

 Figure 2 - 99: Call single-valued and multi-valued variables - Call Sequence steps with Call
variables in Projects view ... 2-115

 Figure 2 - 100: Call single-valued and multi-valued variables - Sequence execution result in
sequence editor .. 2-116

 Figure 2 - 101: Test single-valued variable - Configuration example 2-120

 Figure 2 - 102: Test multi-valued variable - Configuration example ... 2-120

 Figure 2 - 103: Test multi-valued variable - Default value property in Array editor 2-121

 Figure 2 - 104: Test single-valued and multi-valued variables - Test Case and Test variables in
Projects view .. 2-121

 Figure 2 - 105: Test single-valued and multi-valued variables - Sequence execution result in
sequence editor .. 2-122

 Figure 2 - 106: Test single-valued variable - Configuration example 2-123

 Figure 2 - 107: Test multi-valued variable - Configuration example ... 2-123

 Figure 2 - 108: Test multi-valued variable - Default value property in Array editor 2-124

 Figure 2 - 109: Test single-valued and multi-valued variables - Test Case and Test variables in
Projects view .. 2-124

 Figure 2 - 110: Test single-valued and multi-valued variables - Sequence execution result in
sequence editor .. 2-125
xvii

LIST OF FIGURES
 Figure 2 - 111: Test single-valued variable - Configuration example 2-128

 Figure 2 - 112: Test multi-valued variable - Configuration example ... 2-128

 Figure 2 - 113: Test multi-valued variable - Default value property in Array editor 2-129

 Figure 2 - 114: Test single-valued and multi-valued variables - Test Case and Test variables in
Projects view .. 2-129

 Figure 2 - 115: Test single-valued and multi-valued variables - Sequence execution result in
sequence editor .. 2-130

 Figure 2 - 116: Test single-valued variable - Configuration example 2-131

 Figure 2 - 117: Test multi-valued variable - Configuration example ... 2-131

 Figure 2 - 118: Test multi-valued variable - Default value property in Array editor 2-132

 Figure 2 - 119: Test single-valued and multi-valued variables - Test Case and Test variables in
Projects view .. 2-132

 Figure 2 - 120: Test single-valued and multi-valued variables - Sequence execution result in
sequence editor .. 2-133

 Figure 2 - 121: Generic Sequence - Project with existing transaction 2-170

 Figure 2 - 122: Generic Sequence - Sequence object created in Projects view 2-171

 Figure 2 - 123: Generic Sequence - Configuration example .. 2-172

 Figure 2 - 124: Generic Sequence - GetXMLData sequence in Projects view 2-174

 Figure 2 - 125: Generic Sequence - InsertDataInBase sequence in Projects view 2-175

 Figure 2 - 126: Generic Sequence - GetXMLData sequence configuration example 2-176

 Figure 2 - 127: IfExist step - IfArticlesTableExists step in GetXMLData sequence 2-182

 Figure 2 - 128: IfExist step - IfArticlesTableExists step properties ... 2-183

 Figure 2 - 129: IfExist step - IfArticlesTableExists step source ... 2-184

 Figure 2 - 130: IfExistThenElse step - IfArticleExists step in GetXMLData sequence 2-186

 Figure 2 - 131: IfExistThenElse step - IfArticleExists step properties 2-187

 Figure 2 - 132: IfExistThenElse step - IfArticleExists step sources .. 2-187

 Figure 2 - 133: Iterator step - IteratorOnEachRow step in GetXMLData sequence 2-197

 Figure 2 - 134: Iterator step - Configuration example ... 2-198

 Figure 2 - 135: Iterator step - Source configuration .. 2-199

 Figure 2 - 136: jIterator step - Configuration example .. 2-202

 Figure 2 - 137: jIterator step - Object in Projects view, with sequence and other steps 2-203
xviii Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 138: jIterator step - XML result of the sequence after execution 2-203

 Figure 2 - 139: jBreak step - Configuration example .. 2-206

 Figure 2 - 140: jBreak step - Object in Projects view, with sequence and other steps 2-207

 Figure 2 - 141: jBreak step - Resulting XML after executingSearchOneKeyword sequence .. 2-208

 Figure 2 - 142: jSimpleSource step - Configuration example ... 2-220

 Figure 2 - 143: jSimpleSource step - Source configuration .. 2-220

 Figure 2 - 144: jSimpleSource step - Object in Projects view, with sequence and other steps
.. 2-221

 Figure 2 - 145: jException step - Configuration example .. 2-223

 Figure 2 - 146: jException step - Object in Projects view, with sequence and other steps 2-224

 Figure 2 - 147: jException step - Exception message visible in Engine log 2-225

 Figure 2 - 148: Attribute step - Article code, name and status in GetXMLData sequence 2-229

 Figure 2 - 149: Attribute step - Configuration example ... 2-230

 Figure 2 - 150: Attribute step - Attributes generated in GetXmlData sequence XML output 2-231

 Figure 2 - 151: Complex step - GetXMLData sequence complex elements 2-240

 Figure 2 - 152: Complex step - GetXMLData sequence XML output 2-241

 Figure 2 - 153: Complex step - Configuration example .. 2-241

 Figure 2 - 154: jElement step - Configuration example .. 2-252

 Figure 2 - 155: jElement step - Object in Projects view, with sequence and other steps 2-253

 Figure 2 - 156: jElement step - article_num jElement step properties 2-254

 Figure 2 - 157: jElement step - article_num jElement step in GetXmlData sequence 2-255

 Figure 2 - 158: InsertInDataBase sequence insertError step ... 2-261

 Figure 2 - 159: Error messages produced by the insertError step .. 2-261

 Figure 2 - 160: Fixed and sources elements of concatenated error messages 2-262

 Figure 2 - 161: insertError Complex element properties ... 2-262

 Figure 2 - 162: Action sources window (setting of the concatenated string) 2-263

 Figure 2 - 163: Call Transaction step - Configuration example .. 2-272

 Figure 2 - 164: Call Transaction step - Object in Projects view .. 2-273

 Figure 2 - 165: Call_Transaction_GetArticleData step in GetXMLData Sequence 2-274

 Figure 2 - 166: Call_Transaction_GetArticleData step properties .. 2-275
xix

LIST OF FIGURES
 Figure 2 - 167: SMTP send step - Example 1 - Configuration example 2-309

 Figure 2 - 168: SMTP send step - Example 1 - Source configuration 2-310

 Figure 2 - 169: SMTP send step - Example 1 - Object in Projects view, with sequence and other
steps ... 2-311

 Figure 2 - 170: SMTP send step - Example 1 - Received text email .. 2-311

 Figure 2 - 171: SMTP send step - Example 2 - Configuration example 2-313

 Figure 2 - 172: SMTP send step - Example 2 - XSL file in resources 2-314

 Figure 2 - 173: SMTP send step - Example 2 - Object in Projects view, with sequence and other
steps ... 2-314

 Figure 2 - 174: SMTP send step - Example 2 - XSL file content .. 2-315

 Figure 2 - 175: SMTP send step - Example 2 - Received HTML email 2-316

 Figure 2 - 176: SMTP send step - Example 3 - Configuration example 2-317

 Figure 2 - 177: SMTP send step - Example 3 - Attachments property edition 2-318

 Figure 2 - 178: SMTP send step - Example 3 - Files in project resources 2-318

 Figure 2 - 179: SMTP send step - Example 3 - Source configuration 2-319

 Figure 2 - 180: SMTP send step - Example 3 - Object in Projects view, with sequence and other
objects .. 2-320

 Figure 2 - 181: SMTP send step - Example 3 - Received text email with attached files 2-321

 Figure 2 - 182: HTTP connector - Configuration example .. 2-369

 Figure 2 - 183: HTTP connector - Object in Projects view .. 2-370

 Figure 2 - 184: HTTP connector - Connector editor in Studio .. 2-371

 Figure 2 - 185: XML HTTP transaction - Configuration example .. 2-389

 Figure 2 - 186: XML HTTP transaction - Object in Projects view ... 2-390

 Figure 2 - 187: XML HTTP transaction - Responses in connector editor 2-391

 Figure 2 - 188: JSON HTTP transaction - Example 1 - Configuration example 2-400

 Figure 2 - 189: JSON HTTP transaction - Example 1 - Object in Projects view 2-401

 Figure 2 - 190: JSON HTTP transaction - Example 1 - Responses in connector editor 2-402

 Figure 2 - 191: JSON HTTP transaction - Example 2 - Configuration example 2-403

 Figure 2 - 192: JSON HTTP transaction - Example 2 - Object in Projects view 2-404

 Figure 2 - 193: JSON HTTP transaction - Example 2 - Responses in connector editor 2-405

 Figure 2 - 194: HTML connector - Example 1 - Configuration example 2-412
xx Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 195: HTML connector - Example 1 - Object in Projects view 2-413

 Figure 2 - 196: HTML connector - Example 1 - Web page in editor’s Web browser 2-414

 Figure 2 - 197: HTML connector - Example 2 - Configuration example 2-415

 Figure 2 - 198: HTML connector - Example 2 - Object in Projects view 2-416

 Figure 2 - 199: HTML connector - Example 2 - Connector editor with Web browser, DOM tree and
XPath evaluator .. 2-416

 Figure 2 - 200: HTML transaction - Object in Projects view ... 2-427

 Figure 2 - 201: HTML transaction - Configuration example .. 2-428

 Figure 2 - 202: HTML transaction - Synchronization property edition 2-429

 Figure 2 - 203: HTML Screen class - Project’s screen classes and respective criteria 2-432

 Figure 2 - 204: HTML Screen class - googleWebPages screen class properties 2-433

 Figure 2 - 205: HTML Screen class - HTML web page .. 2-434

 Figure 2 - 206: HTML Screen class - Screen class and first criterion in Projects view 2-435

 Figure 2 - 207: XPath criterion - Google Web page .. 2-438

 Figure 2 - 208: XPath criterion - Generating XPath in the XPath Evaluator 2-438

 Figure 2 - 209: XPath criterion - Configuration example ... 2-439

 Figure 2 - 210: XPath criterion - googleWebPages screen class criterion in Projects view 2-439

 Figure 2 - 211: XPath criterion - HTML web page .. 2-440

 Figure 2 - 212: XPath criterion - Configuration example ... 2-441

 Figure 2 - 213: XPath criterion - Object in Projects view .. 2-441

 Figure 2 - 214: Web Clipper extraction rule - Example 1 - HTML web page 2-446

 Figure 2 - 215: Web Clipper extraction rule - Example 1 - Generating Xpath in the Xpath Evaluator
.. 2-447

 Figure 2 - 216: Web Clipper extraction rule - Example 1 - Configuration example 2-447

 Figure 2 - 217: Web Clipper extraction rule - Example 1 - Attributes property edition 2-448

 Figure 2 - 218: Web Clipper extraction rule - Example 1 - Object in Projects view 2-449

 Figure 2 - 219: Web Clipper extraction rule - Example 1 - Resulting XML with rule 2-450

 Figure 2 - 220: Web Clipper extraction rule - Example 1 - Webized page with rule 2-451

 Figure 2 - 221: Web Clipper extraction rule - Example 1 - Resulting XML with rule (with parent
extraction) ... 2-452

 Figure 2 - 222: Web Clipper extraction rule - Example 1 - Webized page with rule (with parent
xxi

LIST OF FIGURES
extraction) ... 2-453

 Figure 2 - 223: Web Clipper extraction rule - Example 2 - HTML web page 2-454

 Figure 2 - 224: Web Clipper extraction rule - Example 2 - Generating Xpath in the Xpath Evaluator
.. 2-454

 Figure 2 - 225: Web Clipper extraction rule - Example 2 - Configuration example 2-455

 Figure 2 - 226: Web Clipper extraction rule - Example 2 - Object in Projects view 2-456

 Figure 2 - 227: Web Clipper extraction rule - Example 2 - Resulting XML with rule 2-457

 Figure 2 - 228: Web Clipper extraction rule - Example 2 - Webized page with rule 2-458

 Figure 2 - 229: Web Clipper extraction rule - Example 2 - Clipped web page 2-460

 Figure 2 - 230: Add link extraction rule - Generating Xpath in the Xpath Evaluator 2-461

 Figure 2 - 231: Add link extraction rule - Configuration example .. 2-461

 Figure 2 - 232: Add link extraction rule - Object in Projects view ... 2-462

 Figure 2 - 233: Add link extraction rule - Resulting XML with rule .. 2-462

 Figure 2 - 234: Add link extraction rule - Webized page with rule .. 2-463

 Figure 2 - 235: Web Clipper extraction rule - Example 1 - Clipped web page 2-466

 Figure 2 - 236: Add button extraction rule - Generating Xpath in the Xpath Evaluator 2-466

 Figure 2 - 237: Add button extraction rule - Configuration example ... 2-467

 Figure 2 - 238: Add button extraction rule - Storing image file on "img" folder 2-468

 Figure 2 - 239: Add button extraction rule - Object in Projects view ... 2-469

 Figure 2 - 240: Add button extraction rule - Resulting XML with rule 2-470

 Figure 2 - 241: Add button extraction rule - Webized page with rule .. 2-471

 Figure 2 - 242: Web Clipper extraction rule - Example 2 - Clipped web page 2-474

 Figure 2 - 243: Add image extraction rule - Generating Xpath in the Xpath Evaluator 2-474

 Figure 2 - 244: Add image extraction rule - Configuration example ... 2-475

 Figure 2 - 245: Add image extraction rule - Storing image file in the project directory 2-475

 Figure 2 - 246: Add image extraction rule - Object in Projects view ... 2-476

 Figure 2 - 247: Add image extraction rule - Resulting XML with rule .. 2-477

 Figure 2 - 248: Add image extraction rule - Webized page with rule .. 2-478

 Figure 2 - 249: Web Clipper extraction rule - Example 2 - Clipped web page 2-480

 Figure 2 - 250: Web Clipper extraction rule - Example 2 - Resulting XML 2-480
xxii Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 251: Delete nodes extraction rule - Generating Xpath in the Xpath Evaluator 2-481

 Figure 2 - 252: Delete nodes extraction rule - Configuration example 2-481

 Figure 2 - 253: Delete nodes extraction rule - Object in Projects view 2-482

 Figure 2 - 254: Delete nodes extraction rule - Resulting XML with rule 2-483

 Figure 2 - 255: Delete nodes extraction rule - Webized page with rule 2-483

 Figure 2 - 256: Node extraction rule - HTML web page .. 2-485

 Figure 2 - 257: Node extraction rule - Generating Xpath in the Xpath Evaluator 2-486

 Figure 2 - 258: Node extraction rule - Configuration example .. 2-486

 Figure 2 - 259: Node extraction rule - Resulting XML with rule .. 2-486

 Figure 2 - 260: Node list extraction rule - HTML web page .. 2-487

 Figure 2 - 261: Node list extraction rule - Generating Xpath in the Xpath Evaluator 2-488

 Figure 2 - 262: Node list extraction rule - Configuration example ... 2-488

 Figure 2 - 263: Node list extraction rule - Resulting XML with rule ... 2-488

 Figure 2 - 264: Record extraction rule - Google results web page ... 2-492

 Figure 2 - 265: Record extraction rule - Configuration example ... 2-493

 Figure 2 - 266: Record extraction rule - Description property: columns definition 2-493

 Figure 2 - 267: Record extraction rule - Column properties configuration example 2-494

 Figure 2 - 268: Record extraction rule - Resulting XML with rule ... 2-494

 Figure 2 - 269: Table extraction rule - SalesForce Leads web page .. 2-497

 Figure 2 - 270: Table extraction rule - New Table wizard page .. 2-498

 Figure 2 - 271: Table extraction rule - Configuration example .. 2-499

 Figure 2 - 272: Table extraction rule - Description property: rows and columns definition 2-499

 Figure 2 - 273: Table extraction rule - Row properties configuration example 2-500

 Figure 2 - 274: Table extraction rule - Column properties configuration example 2-500

 Figure 2 - 275: Table extraction rule - Resulting XML with automatically parametered rule 2-501

 Figure 2 - 276: Table extraction rule - Google results web page .. 2-502

 Figure 2 - 277: Table extraction rule - Configuration example .. 2-503

 Figure 2 - 278: Table extraction rule - Description property: rows and columns definition 2-504

 Figure 2 - 279: Table extraction rule - Row properties configuration example 2-504
xxiii

LIST OF FIGURES
 Figure 2 - 280: Table extraction rule - Column properties configuration example 2-504

 Figure 2 - 281: Table extraction rule - Resulting XML with rule .. 2-505

 Figure 2 - 282: Table extraction rule - Table flipping example .. 2-506

 Figure 2 - 283: Text extraction rule - HTML web page ... 2-509

 Figure 2 - 284: Text extraction rule - Generating Xpath in the Xpath Evaluator 2-509

 Figure 2 - 285: Text extraction rule - Configuration example .. 2-510

 Figure 2 - 286: Text extraction rule - Resulting XML with rule .. 2-510

 Figure 2 - 287: HTTP headers extraction rule - HTML web page ... 2-511

 Figure 2 - 288: HTTP headers extraction rule - Object in Projects view 2-512

 Figure 2 - 289: HTTP headers extraction rule - Resulting XML with rule 2-513

 Figure 2 - 290: Page URL extraction rule - HTML web page .. 2-514

 Figure 2 - 291: Page URL extraction rule - Configuration example .. 2-515

 Figure 2 - 292: Page URL extraction rule - Object in Projects view .. 2-516

 Figure 2 - 293: Page URL extraction rule - Resulting XML with rule .. 2-516

 Figure 2 - 294: Transaction start Handler - Configuration example .. 2-522

 Figure 2 - 295: Transaction start Handler - Objects in Projects view .. 2-523

 Figure 2 - 296: Transaction start Handler - Objects in Projects view .. 2-524

 Figure 2 - 297: Transaction start Handler - Return statement overridding the default empty result
value ... 2-524

 Figure 2 - 298: Screen class entry handler - US directory website pages with search form 2-527

 Figure 2 - 299: Screen class entry handler - Configuration example .. 2-528

 Figure 2 - 300: Screen class entry handler - Objects in Projects view 2-529

 Figure 2 - 301: Screen class entry handler - Objects in Projects view 2-530

 Figure 2 - 302: Screen class entry handler - Object properties .. 2-531

 Figure 2 - 303: Screen class exit handler - Object in Projects view .. 2-534

 Figure 2 - 304: Screen class exit handler - Object properties ... 2-535

 Figure 2 - 305: Default entry handler - SalesForce website authentication page 2-537

 Figure 2 - 306: Default entry handler - SalesForce website home page 2-538

 Figure 2 - 307: Default entry handler - Configuration example ... 2-539

 Figure 2 - 308: Default entry handler - Object in Projects view .. 2-539
xxiv Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 309: Function statement - US directory website pages with search form 2-544

 Figure 2 - 310: Function statement - Object in Projects view ... 2-545

 Figure 2 - 311: Container statement - Enabled and disabled objects in Projects view 2-549

 Figure 2 - 312: If statement - SalesForce website authentication page 2-551

 Figure 2 - 313: If statement - Configuration example ... 2-552

 Figure 2 - 314: If statement - Object in Projects view ... 2-553

 Figure 2 - 315: While statement - Configuration example .. 2-556

 Figure 2 - 316: While statement - Object in Projects view .. 2-557

 Figure 2 - 317: Return statement - SalesForce website authentication page 2-560

 Figure 2 - 318: Return statement - Configuration example ... 2-561

 Figure 2 - 319: Return statement - Object in Projects view .. 2-562

 Figure 2 - 320: Return statement - Start transaction handler properties 2-563

 Figure 2 - 321: Break statement - Object in Projects view .. 2-565

 Figure 2 - 322: Break statement - Executing fillForm transaction on Google search page 2-566

 Figure 2 - 323: Call function statement - US directory website pages with search form 2-568

 Figure 2 - 324: Call function statement - Objects in Projects view ... 2-570

 Figure 2 - 325: Call function statement - Configuration example .. 2-571

 Figure 2 - 326: Transaction JS statement - Configuration example ... 2-576

 Figure 2 - 327: Transaction JS statement - Configuration example ... 2-576

 Figure 2 - 328: Transaction JS statement - Objects in Projects view 2-577

 Figure 2 - 329: Input HTML set value statement - SalesForce website authentication page ... 2-584

 Figure 2 - 330: Input HTML set value statement - Configuration example 2-585

 Figure 2 - 331: Input HTML set value statement - Configuration example 2-586

 Figure 2 - 332: Input HTML set value statement - Synchronization property edition for No Wait
.. 2-586

 Figure 2 - 333: Input HTML set value statement - Synchronization property edition for Wait time 0ms
.. 2-587

 Figure 2 - 334: Input HTML set value statement - Objects in Projects view 2-588

 Figure 2 - 335: Input HTML set selected statement - US directory website pages with search form
.. 2-592

 Figure 2 - 336: Input HTML set selected statement - Configuration example 2-593
xxv

LIST OF FIGURES
 Figure 2 - 337: Input HTML set selected statement - Synchronization property edition 2-594

 Figure 2 - 338: Input HTML set selected statement - Object in Projects view 2-595

 Figure 2 - 339: Input HTML set checked statement - SalesForce website authentication page
.. 2-598

 Figure 2 - 340: Input HTML set checked statement - Configuration example 2-599

 Figure 2 - 341: Input HTML set checked statement - Synchronization property edition 2-599

 Figure 2 - 342: Input HTML set checked statement - Object in Projects view 2-600

 Figure 2 - 343: Mouse action statement - Configuration example .. 2-604

 Figure 2 - 344: Mouse action statement - Synchronization property edition 2-605

 Figure 2 - 345: Mouse action statement - Object in Projects view .. 2-606

 Figure 2 - 346: Create event statement - Configuration example ... 2-614

 Figure 2 - 347: Create event statement - Synchronization property edition 2-615

 Figure 2 - 348: Create event statement - Object in Projects view .. 2-616

 Figure 2 - 349: Credentials statement - Intranet website with basic authentication 2-621

 Figure 2 - 350: Credentials statement - Configuration example ... 2-622

 Figure 2 - 351: Credentials statement - Object in Projects view ... 2-623

 Figure 2 - 352: Browser property change statement - Configuration example 2-627

 Figure 2 - 353: Browser property change statement - Object in Projects view 2-628

 Figure 2 - 354: Browser property change statement - Connecting to Google website with images
rendering disabled .. 2-628

 Figure 2 - 355: Browser property change statement - Executing transaction and extracting data with
images rendering disabled ... 2-629

 Figure 2 - 356: Cookies Get statement - Configuration example .. 2-634

 Figure 2 - 357: Cookies Get statement - Object in Projects view ... 2-635

 Figure 2 - 358: Cookies Get statement - Log displaying retrieved cookies 2-636

 Figure 2 - 359: Get URL statement - US directory website pages with search form 2-643

 Figure 2 - 360: Get URL statement - Configuration example ... 2-644

 Figure 2 - 361: Get URL statement - Object in Projects view ... 2-645

 Figure 2 - 362: Get attachment statement - Convertigo website .. 2-648

 Figure 2 - 363: Get attachment statement - Configuration example ... 2-649

 Figure 2 - 364: Get attachment statement - Objects in Projects view 2-650
xxvi Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 365: Get attachment statement - Downloaded file in Project Explorer view 2-651

 Figure 2 - 366: HTTP request statement - HTML transaction with HTTP variable in Projects view ..
.. 2-658

 Figure 2 - 367: HTTP request statement - Configuration example ... 2-659

 Figure 2 - 368: HTTP request statement - Synchronization property edition 2-660

 Figure 2 - 369: HTTP request statement - Object in Projects view ... 2-660

 Figure 2 - 370: HTTP request statement - Connector editor .. 2-661

 Figure 2 - 371: HTTP request statement - Connector editor after transaction execution 2-662

 Figure 2 - 372: Exception statement - SalesForce website authentication page 2-664

 Figure 2 - 373: Exception statement - Configuration example .. 2-665

 Figure 2 - 374: Exception statement - Configuration example .. 2-665

 Figure 2 - 375: Exception statement - Objects in Projects view ... 2-666

 Figure 2 - 376: Exception statement - Exception and message visible in Engine log 2-667

 Figure 2 - 377: Exception statement - Exception and message visible in Engine log 2-667

 Figure 2 - 378: Get nodes statement - Configuration example ... 2-670

 Figure 2 - 379: Get nodes statement - Object in Projects view ... 2-671

 Figure 2 - 380: Get nodes statement - Configuration example ... 2-672

 Figure 2 - 381: Get nodes statement - Object in Projects view ... 2-673

 Figure 2 - 382: Context Get statement - SalesForce website authentication page 2-677

 Figure 2 - 383: Context Get statement - Configuration example for username 2-678

 Figure 2 - 384: Context Get statement - Configuration example for password 2-678

 Figure 2 - 385: Context Get statement - Objects in Projects view .. 2-679

 Figure 2 - 386: Context Set statement - SalesForce website authentication page 2-681

 Figure 2 - 387: Context Set statement - Configuration example for username 2-682

 Figure 2 - 388: Context Set statement - Configuration example for password 2-682

 Figure 2 - 389: Context Set statement - Objects in Projects view .. 2-683

 Figure 2 - 390: Context Add text node statement - Configuration example 2-685

 Figure 2 - 391: Context Add text node statement - Object in Projects view 2-686

 Figure 2 - 392: Context Add text node statement - Resulting XML after executing fillForm
transaction on Google search page ... 2-686
xxvii

LIST OF FIGURES
 Figure 2 - 393: Log statement - Configuration example ... 2-688

 Figure 2 - 394: Log statement - Object in Projects view ... 2-689

 Figure 2 - 395: Log statement - Log displaying retrieved cookies .. 2-689

 Figure 2 - 396: Continue with Site Clipper statement - Login page of Convertigo administration
website ... 2-694

 Figure 2 - 397: Continue with Site Clipper statement - Configuration example 2-695

 Figure 2 - 398: Continue with Site Clipper statement - Object in Projects view 2-696

 Figure 2 - 399: Continue with Site Clipper statement - Return of transaction execution 2-697

 Figure 2 - 400: Recorder for Site Clipper statement - Form page of LoanCalculator website .. 2-699

 Figure 2 - 401: Recorder for Site Clipper statement - Result page of LoanCalculator website
.. 2-700

 Figure 2 - 402: Recorder for Site Clipper statement - Result page through Site Clipper after the
transaction execution ... 2-701

 Figure 2 - 403: Recorder for Site Clipper statement - Result page in connector editor after
transaction execution ... 2-702

 Figure 2 - 404: Recorder for Site Clipper statement - Configuration example 2-703

 Figure 2 - 405: Recorder for Site Clipper statement - Object in Projects view 2-704

 Figure 2 - 406: Recorder for Site Clipper statement - Return of transaction execution 2-705

 Figure 2 - 407: Javelin connector - Configuration example .. 2-711

 Figure 2 - 408: Javelin connector - Connection address property edition 2-712

 Figure 2 - 409: Javelin connector - Connector editor in Studio ... 2-712

 Figure 2 - 410: Javelin Screen class - Legacy screen .. 2-715

 Figure 2 - 411: Javelin Screen class - Screen class and first criterion in Projects view 2-716

 Figure 2 - 412: Javelin Screen class - LoginScreen screen class .. 2-717

 Figure 2 - 413: Javelin Screen class - MNS010 screen class .. 2-717

 Figure 2 - 414: Javelin Screen class - Project’s screen classes and respective criteria 2-718

 Figure 2 - 415: Javelin Screen class - Inherited criteria and extraction rules 2-719

 Figure 2 - 416: Javelin Screen class - LoginScreen screen class properties 2-719

 Figure 2 - 417: Block generation on legacy application screen (partial view of screen) 2-721

 Figure 2 - 418: Empty screen criterion - Legacy screen ... 2-726

 Figure 2 - 419: Find string criterion - Legacy screen .. 2-728
xxviii Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 420: Find string criterion - Configuration example .. 2-728

 Figure 2 - 421: Regular expression criterion - Legacy screen .. 2-730

 Figure 2 - 422: Regular expression criterion - Configuration example 2-731

 Figure 2 - 423: Style extraction rule - Legacy screen ... 2-736

 Figure 2 - 424: Style extraction rule - Resulting XML without rule .. 2-736

 Figure 2 - 425: Style extraction rule - Webized page without rule .. 2-737

 Figure 2 - 426: Style extraction rule - Configuration example ... 2-738

 Figure 2 - 427: Style extraction rule - Resulting XML with rule ... 2-738

 Figure 2 - 428: Style extraction rule - Webized page with rule ... 2-739

 Figure 2 - 429: Container extraction rule - Legacy screen .. 2-743

 Figure 2 - 430: Container extraction rule - Webized page without rule 2-743

 Figure 2 - 431: Container extraction rule - Resulting XML without rule 2-744

 Figure 2 - 432: Container extraction rule - Configuration example ... 2-744

 Figure 2 - 433: Container extraction rule - Container layout property edition 2-745

 Figure 2 - 434: Container extraction rule - Resulting XML with rule ... 2-745

 Figure 2 - 435: Container extraction rule - Webized page with rule .. 2-746

 Figure 2 - 436: Choice extraction rule - Legacy screen .. 2-751

 Figure 2 - 437: Choice extraction rule - Resulting XML without rule ... 2-752

 Figure 2 - 438: Choice extraction rule - Configuration example ... 2-752

 Figure 2 - 439: Choice extraction rule - Resulting XML with rule set to combo box 2-753

 Figure 2 - 440: Choice extraction rule - Webized page with rule set to combo box 2-753

 Figure 2 - 441: Choice extraction rule - Resulting XML with rule set to radio buttons 2-753

 Figure 2 - 442: Choice extraction rule - Webized page with rule set to radio buttons 2-754

 Figure 2 - 443: Commands extraction rule - Legacy screen ... 2-758

 Figure 2 - 444: Commands extraction rule - Resulting XML without rule 2-759

 Figure 2 - 445: Commands extraction rule - Webized page without rule 2-759

 Figure 2 - 446: Commands extraction rule - Configuration example .. 2-760

 Figure 2 - 447: Commands extraction rule - Keywords table property edition 2-760

 Figure 2 - 448: Commands extraction rule - Resulting XML with rule 2-761
xxix

LIST OF FIGURES
 Figure 2 - 449: Commands extraction rule - Webized page with rule 2-761

 Figure 2 - 450: Field/Text extraction rule - First configuration example 2-766

 Figure 2 - 451: Field/Text extraction rule - Field layout property edition 2-766

 Figure 2 - 452: Field/Text extraction rule - Field attributes property edition 2-767

 Figure 2 - 453: Field/Text extraction rule - Second configuration example 2-768

 Figure 2 - 454: Field/Text extraction rule - Field layout property edition 2-768

 Figure 2 - 455: Field/Text extraction rule - Field attributes property edition 2-769

 Figure 2 - 456: Field/Text extraction rule - Resulting XML ... 2-769

 Figure 2 - 457: Fiedl/text extraction rule - Legacy screen with rules .. 2-770

 Figure 2 - 458: Fiedl/text extraction rule - Webized page with rules ... 2-770

 Figure 2 - 459: Date extraction rule - Legacy screen .. 2-775

 Figure 2 - 460: Date extraction rule - Resulting XML without rule .. 2-775

 Figure 2 - 461: Date extraction rule - Webized page without rule ... 2-776

 Figure 2 - 462: Date extraction rule - Configuration example ... 2-777

 Figure 2 - 463: Date extraction rule - Resulting XML with rule ... 2-777

 Figure 2 - 464: Date extraction rule - Webized page with rule .. 2-778

 Figure 2 - 465: Panel type .. 2-782

 Figure 2 - 466: Panel extraction rule - Legacy screen .. 2-783

 Figure 2 - 467: Panel extraction rule - Resulting XML without rule ... 2-784

 Figure 2 - 468: Panel extraction rule - Webized page without rule ... 2-784

 Figure 2 - 469: Panel extraction rule - Configuration example ... 2-785

 Figure 2 - 470: Panel extraction rule - Resulting XML with rule .. 2-786

 Figure 2 - 471: Panel extraction rule - Webized page with rule .. 2-786

 Figure 2 - 472: Separator extraction rule - Legacy screen ... 2-789

 Figure 2 - 473: Separator extraction rule - Resulting XML without rule 2-789

 Figure 2 - 474: Separator extraction rule - Webized page without rule 2-790

 Figure 2 - 475: Separator extraction rule - Configuration example ... 2-791

 Figure 2 - 476: Separator extraction rule - Resulting XML with rule ... 2-791

 Figure 2 - 477: Separator extraction rule - Webized page with rule ... 2-792
xxx Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 478: Record extraction rule - Legacy Screen ... 2-795

 Figure 2 - 479: Record extraction rule - Resulting XML without rule .. 2-795

 Figure 2 - 480: Record extraction rule - Configuration example ... 2-796

 Figure 2 - 481: Record extraction rule - Resulting XML with rule ... 2-797

 Figure 2 - 482: Table extraction rule - Legacy screen .. 2-803

 Figure 2 - 483: Table extraction rule - Resulting XML without rule ... 2-804

 Figure 2 - 484: Table extraction rule - Webized page without rule ... 2-805

 Figure 2 - 485: Table extraction rule - Configuration example .. 2-806

 Figure 2 - 486: Table extraction rule - Columns property edition .. 2-806

 Figure 2 - 487: Table extraction rule - Resulting XML .. 2-807

 Figure 2 - 488: Table extraction rule - Webized page with rule .. 2-807

 Figure 2 - 489: Button extraction rule - Configuration example .. 2-813

 Figure 2 - 490: Button extraction rule - Button layout property edition 2-813

 Figure 2 - 491: Button extraction rule - Resulting XML ... 2-813

 Figure 2 - 492: Button extraction rule - Webized page with rule ... 2-814

 Figure 2 - 493: Image extraction rule - Configuration example ... 2-819

 Figure 2 - 494: Image extraction rule - Image layout property edition 2-819

 Figure 2 - 495: Image extraction rule - Resulting XML ... 2-819

 Figure 2 - 496: Image extraction rule - Webized page with rule ... 2-820

 Figure 2 - 497: SNA commands extraction rule - Legacy screen ... 2-825

 Figure 2 - 498: SNA commands extraction rule - Resulting XML without rule 2-826

 Figure 2 - 499: SNA commands extraction rule - Webized page without rule 2-826

 Figure 2 - 500: SNA commands extraction rule - Configuration example 2-828

 Figure 2 - 501: SNA commands extraction rule - Keywords table property edition 2-829

 Figure 2 - 502: SNA commands extraction rule - Resulting XML with rule 2-830

 Figure 2 - 503: SNA commands extraction rule - Webized page with rule 2-830

 Figure 2 - 504: AS400 menu extraction rule - Legacy screen .. 2-833

 Figure 2 - 505: AS400 menu extraction rule - Resulting XML without rule 2-833

 Figure 2 - 506: AS400 menu extraction rule - Webized page without rule 2-834
xxxi

LIST OF FIGURES
 Figure 2 - 507: AS400 menu extraction rule - Configuration example 2-835

 Figure 2 - 508: AS400 menu extraction rule - Principle .. 2-835

 Figure 2 - 509: AS400 menu extraction rule - Resulting XML with rule 2-836

 Figure 2 - 510: AS400 menu extraction rule - Webized page with rule 2-836

 Figure 2 - 511: Subfile extraction rule - Legacy screen containging CUA subfile 2-840

 Figure 2 - 512: Subfile extraction rule - Resulting XML without rule ... 2-842

 Figure 2 - 513: Table extraction rule - Webized page without rule ... 2-843

 Figure 2 - 514: Subfile extraction rule - Configuration example .. 2-844

 Figure 2 - 515: Subfile extraction rule - Attributes editior .. 2-845

 Figure 2 - 516: Subfile extraction rule - Resulting XML .. 2-846

 Figure 2 - 517: Subfile extraction rule - Webized page with rule .. 2-847

 Figure 2 - 518: Subfile extraction rule - Selection field contextual menu 2-847

 Figure 2 - 519: Merge blocks extraction rule - Legacy screen .. 2-858

 Figure 2 - 520: Merge blocks extraction rule - Resulting XML without rule 2-858

 Figure 2 - 521: Merge blocks extraction rule - Configuration example 2-859

 Figure 2 - 522: Merge blocks extraction rule - Resulting XML with rule 2-859

 Figure 2 - 523: Delete blocks extraction rule - Legacy Screen ... 2-862

 Figure 2 - 524: Delete blocks extraction rule - Resulting XML without rule 2-862

 Figure 2 - 525: Delete blocks extraction rule - Webized page without rule 2-863

 Figure 2 - 526: Delete blocks extraction rule - Configuration example 2-863

 Figure 2 - 527: Delete blocks extraction rule - Resulting XML with rule 2-864

 Figure 2 - 528: Delete blocks extraction rule - Webized page with rule 2-864

 Figure 2 - 529: Split block rule - Legacy Screen ... 2-867

 Figure 2 - 530: Split block rule - Resulting XML without rule .. 2-867

 Figure 2 - 531: Split block extraction rule - Configuration example .. 2-868

 Figure 2 - 532: Split block rule - Resulting XML with rule ... 2-868

 Figure 2 - 533: Trim spaces extraction rule - Legacy screen .. 2-871

 Figure 2 - 534: Trim spaces extraction rule - Resulting XML without rule 2-871

 Figure 2 - 535: Trim spaces extraction rule - Configuration example 2-872
xxxii Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 536: Trim spaces extraction rule - Resulting XML with rule 2-872

 Figure 2 - 537: Move blocks extraction rule - Legacy screen ... 2-875

 Figure 2 - 538: Move blocks extraction rule - Resulting XML without rule 2-875

 Figure 2 - 539: Move blocks extraction rule - Webized page without rule 2-875

 Figure 2 - 540: Move blocks extraction rule - Configuration example 2-876

 Figure 2 - 541: Move blocks extraction rule - Moving layout property edition 2-876

 Figure 2 - 542: Move blocks extraction rule - Resulting XML with rule 2-877

 Figure 2 - 543: Move blocks extraction rule - Webized page with rule 2-877

 Figure 2 - 544: Letter case extraction rule - Legacy screen ... 2-881

 Figure 2 - 545: Letter case extraction rule - Resulting XML without rule 2-881

 Figure 2 - 546: Letter case extraction rule - Resulting XML with rule with "Lower case" property value
.. 2-882

 Figure 2 - 547: Letter case extraction rule - Configuration example ... 2-882

 Figure 2 - 548: Letter case extraction rule - Resulting XML with "Lower case with first letter upper
case" property value ... 2-883

 Figure 2 - 549: Letter case extraction rule - Webized page with rule 2-883

 Figure 2 - 550: Replace text extraction rule - Legacy Screen ... 2-886

 Figure 2 - 551: Removing of Blocks extraction rule - Resulting XML without rule 2-886

 Figure 2 - 552: Replace text extraction rule - Webized page without rule 2-887

 Figure 2 - 553: Replace text extraction rule - Configuration example 2-887

 Figure 2 - 554: Replace text extraction rule - Resulting XML with rule 2-888

 Figure 2 - 555: Replace text extraction rule - Webized page with rule 2-888

 Figure 2 - 556: Tag Name extraction rule - Legacy screen .. 2-896

 Figure 2 - 557: Tag Name extraction rule - Resulting XML without rule 2-897

 Figure 2 - 558: Tag Name extraction rule - Selected zone ... 2-898

 Figure 2 - 559: Tag name extraction rule - Configuration example .. 2-899

 Figure 2 - 560: Tag name extraction rule - Configuration example .. 2-899

 Figure 2 - 561: Tag Name extraction rule - Resulting XML with rule (Label policy as Explicit)
.. 2-900

 Figure 2 - 562: Tag name extraction rule - Configuration example .. 2-901

 Figure 2 - 563: Tag Name extraction rule - Resulting XML with rule (Label policy as From previous
xxxiii

LIST OF FIGURES
block) .. 2-901

 Figure 2 - 564: Attribute extraction rule - Legacy screen .. 2-905

 Figure 2 - 565: Attribute extraction rule - Resulting XML without rule 2-905

 Figure 2 - 566: Attribute extraction rule - Configuration example ... 2-906

 Figure 2 - 567: Attribute extraction rule - Resulting XML with rule ... 2-906

 Figure 2 - 568: Site Clipper connector - Configuration example ... 2-912

 Figure 2 - 569: Site Clipper connector - Connector editor in Studio .. 2-913

 Figure 2 - 570: Site Clipper connector - French version of Google website 2-913

 Figure 2 - 571: Site Clipper connector - Configuration example ... 2-914

 Figure 2 - 572: Site Clipper connector - Accessing Google resources through Convertigo 2-915

 Figure 2 - 573: Site Clipper connector - Maps domain blacklisted ... 2-915

 Figure 2 - 574: Response header criterion - Convertigo test platformHome page 2-919

 Figure 2 - 575: Site Clipper transaction - Configuration example ... 2-920

 Figure 2 - 576: Site Clipper transaction - Object in Projects view ... 2-921

 Figure 2 - 577: Site Clipper transaction - Convertigo test platform Home page accessed through
Convertigo .. 2-921

 Figure 2 - 578: Site Clipper transaction - Redirection URL in XML .. 2-922

 Figure 2 - 579: Site Clipper Screen class - Convertigo test platformHome page 2-924

 Figure 2 - 580: Site Clipper Screen class - Screen class and first criterion in Projects view 2-925

 Figure 2 - 581: Site Clipper Screen class - Project’s screen classes, respective criteria and rules ..
.. 2-926

 Figure 2 - 582: Site Clipper Screen class - HTML_pages screen class properties 2-926

 Figure 2 - 583: URL criterion - Convertigo Administration Configuration page 2-931

 Figure 2 - 584: URL criterion - Configuration example ... 2-932

 Figure 2 - 585: URL criterion - Configuration example ... 2-933

 Figure 2 - 586: URL criterion - Configuration example ... 2-933

 Figure 2 - 587: URL criterion - Objects in Projects view ... 2-934

 Figure 2 - 588: URL criterion - Browser after the execution of the LoginAdmin transaction .. 2-935

 Figure 2 - 589: URL criterion - Added HTTP header containing detected screen class name . 2-936

 Figure 2 - 590: Match request header criterion - Convertigo Administration Configuration page
.. 2-938
xxxiv Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 591: Request header criterion - Configuration example ... 2-939

 Figure 2 - 592: Request header criterion - Configuration example ... 2-939

 Figure 2 - 593: Request header criterion - Objects in Projects view ... 2-940

 Figure 2 - 594: Request header criterion - Browser after the execution of the LoginAdmin
transaction in Firefox .. 2-941

 Figure 2 - 595: Request header criterion - Browser after the execution of the LoginAdmin
transaction in Chrome .. 2-942

 Figure 2 - 596: MIME type criterion - Convertigo Administration Configuration page 2-945

 Figure 2 - 597: MIME type criterion - Configuration example ... 2-945

 Figure 2 - 598: MIME type criterion - Object in Projects view ... 2-946

 Figure 2 - 599: MIME type criterion - Browser after the execution of the LoginAdmin transaction .
.. 2-947

 Figure 2 - 600: Regular expression criterion - Convertigo Administration Configuration page . 2-949

 Figure 2 - 601: Regular expression criterion - Configuration example 2-950

 Figure 2 - 602: Regular expression criterion - Object in Projects view 2-951

 Figure 2 - 603: Regular expression criterion - Browser after the execution of the LoginAdmin
transaction .. 2-952

 Figure 2 - 604: Regular expression criterion - Added HTTP header containing detected screen class
names ... 2-953

 Figure 2 - 605: Response header criterion - Convertigo test platformHome page 2-955

 Figure 2 - 606: Response header criterion - Configuration example .. 2-956

 Figure 2 - 607: Response header criterion - Objects in Projects view 2-956

 Figure 2 - 608: Response header criterion - Browser after the execution of the
connectionLocalIP transaction .. 2-957

 Figure 2 - 609: Status-Code criterion - Apple website 404 Not Found page 2-959

 Figure 2 - 610: Status-Code criterion - Configuration example .. 2-960

 Figure 2 - 611: Status-Code criterion - Object in Projects view .. 2-961

 Figure 2 - 612: Status-Code criterion - Browser after the execution of the Access404Page
transaction .. 2-962

 Figure 2 - 613: Add request header extraction rule - request.urih.com website 2-966

 Figure 2 - 614: Add request header extraction rule - Configuration example 2-967

 Figure 2 - 615: Add request header extraction rule - Object in Projects view 2-967

 Figure 2 - 616: Add request header extraction rule - Header added to the request to the website
xxxv

LIST OF FIGURES
page ... 2-968

 Figure 2 - 617: Add request header extraction rule - accept-encoding header existing on the request
to the web page .. 2-969

 Figure 2 - 618: Add request header extraction rule - Configuration example 2-970

 Figure 2 - 619: Add request header extraction rule - Configuration example 2-970

 Figure 2 - 620: Add request header extraction rule - Objects in Projects view 2-971

 Figure 2 - 621: Add request header extraction rule - Header added and header not modified on the
request to the web page ... 2-972

 Figure 2 - 622: Modify request header extraction rule - request.urih.com website 2-974

 Figure 2 - 623: Modify request header extraction rule - Added header and original accept-encoding
header on the request to the web page .. 2-975

 Figure 2 - 624: Modify request header extraction rule - Configuration example 2-976

 Figure 2 - 625: Modify request header extraction rule - Objects in Projects view 2-977

 Figure 2 - 626: Modify request header extraction rule - Added and modified headers on the request
to the web page .. 2-978

 Figure 2 - 627: Modify request header extraction rule - Configuration example 2-979

 Figure 2 - 628: Modify request header extraction rule - Object in Projects view 2-980

 Figure 2 - 629: Modify request header extraction rule - Header added on Google HTML page
.. 2-981

 Figure 2 - 630: Remove request header extraction rule - request.urih.com website 2-983

 Figure 2 - 631: Remove request header extraction rule - Added header and original accept-encoding
header on the request to the web page .. 2-984

 Figure 2 - 632: Remove request header extraction rule - Configuration example 2-985

 Figure 2 - 633: Remove request header extraction rule - Objects in Projects view 2-986

 Figure 2 - 634: Remove request header extraction rule - Added and removed headers on the
request to the web page ... 2-987

 Figure 2 - 635: Add response header extraction rule - French version of Google website 2-993

 Figure 2 - 636: Add response header extraction rule - Configuration example 2-994

 Figure 2 - 637: Add response header extraction rule - Object in Projects view 2-994

 Figure 2 - 638: Add response header extraction rule - Header added on Google HTML page
.. 2-995

 Figure 2 - 639: Add response header extraction rule - content-type header existing on Google HTML
page ... 2-996

 Figure 2 - 640: Add response header extraction rule - Configuration example 2-997
xxxvi Reference Manual - CEMS 7.2.0

LIST OF FIGURES
 Figure 2 - 641: Add response header extraction rule - Configuration example 2-997

 Figure 2 - 642: Add response header extraction rule - Objects in Projects view 2-998

 Figure 2 - 643: Add response header extraction rule - Header added and header not modified on
Google HTML page .. 2-999

 Figure 2 - 644: Modify response header extraction rule - French version of Google website 2-1001

 Figure 2 - 645: Modify response header extraction rule - Added header and original content-type
header on Google HTML page ... 2-1002

 Figure 2 - 646: Modify response header extraction rule - Configuration example 2-1003

 Figure 2 - 647: Modify response header extraction rule - Objects in Projects view 2-1004

 Figure 2 - 648: Modify response header extraction rule - Added and modified headers on Google
HTML page ... 2-1005

 Figure 2 - 649: Modify response header extraction rule - Configuration example 2-1006

 Figure 2 - 650: Modify response header extraction rule - Object in Projects view 2-1007

 Figure 2 - 651: Modify response header extraction rule - Header added on Google HTML page
.. 2-1008

 Figure 2 - 652: Remove response header extraction rule - French version of Google website
.. 2-1009

 Figure 2 - 653: Remove response header extraction rule - Added header and original content-type
header on Google HTML page ... 2-1011

 Figure 2 - 654: Remove response header extraction rule - Configuration example 2-1012

 Figure 2 - 655: Remove response header extraction rule - Objects in Projects view 2-1013

 Figure 2 - 656: Remove response header extraction rule - Added and removed headers on Google
HTML page ... 2-1014

 Figure 2 - 657: Replace string extraction rule - French version of Google website 2-1016

 Figure 2 - 658: Replace string extraction rule - Configuration example 2-1017

 Figure 2 - 659: Replace string extraction rule - Object in Projects view 2-1018

 Figure 2 - 660: Replace string extraction rule - "France" text replaced by "Convertigo" on Google
main page ... 2-1019

 Figure 2 - 661: Replace string extraction rule - Configuration example 2-1020

 Figure 2 - 662: Replace string extraction rule - Object in Projects view 2-1021

 Figure 2 - 663: Script injector extraction rule - French version of Google website 2-1023

 Figure 2 - 664: Script injector extraction rule - Configuration example 2-1024

 Figure 2 - 665: Script injector extraction rule - Object in Projects view 2-1025
xxxvii

LIST OF FIGURES
 Figure 2 - 666: Script injector extraction rule - Creating alert.js file on project’s js folder 2-1026

 Figure 2 - 667: Script injector extraction rule - Editing alert.js file ... 2-1026

 Figure 2 - 668: Script injector extraction rule - Pop-up displayed thanks to JavaScript code injected
.. 2-1027

 Figure 2 - 669: Script injector extraction rule - Zoom on the pop-up 2-1027

 Figure 2 - 670: CSS injector extraction rule - French version of Google website 2-1029

 Figure 2 - 671: CSS injector extraction rule - Configuration example 2-1030

 Figure 2 - 672: CSS injector extraction rule - Object in Projects view 2-1031

 Figure 2 - 673: CSS injector extraction rule - Creating bluebg.css file on project’s css folder
.. 2-1032

 Figure 2 - 674: CSS injector extraction rule - Editing bluebg.css file 2-1032

 Figure 2 - 675: CSS injector extraction rule - Blue background added thanks to CSS code injected
.. 2-1033

 Figure 2 - 676: Rewrite location header extraction rule - US version of Google website 2-1035

 Figure 2 - 677: Rewrite location header extraction rule - French version of Google website . 2-1035

 Figure 2 - 678: Rewrite location header extraction rule - Redirect to Google France reached directly
.. 2-1036

 Figure 2 - 679: Rewrite location header extraction rule - Configuration example 2-1037

 Figure 2 - 680: Rewrite location header extraction rule - Object in Projects view 2-1037

 Figure 2 - 681: Rewrite location header extraction rule - Redirect to Google France through
Convertigo .. 2-1038

 Figure 2 - 682: Rewrite absolute URL extraction rule - French version of Google website 2-1040

 Figure 2 - 683: Rewrite absolute URL extraction rule - Google France accessed through Convertigo
.. 2-1041

 Figure 2 - 684: Rewrite absolute URL extraction rule - Links not reaching Convertigo 2-1041

 Figure 2 - 685: Rewrite absolute URL extraction rule - Configuration example 2-1042

 Figure 2 - 686: Rewrite absolute URL extraction rule - Object in Projects view 2-1043

 Figure 2 - 687: Rewrite absolute URL extraction rule - Accessing Google resources through
Convertigo .. 2-1043

 Figure 2 - 688: Client instruction set value extraction rule - Whites pages on US directory website .
.. 2-1046

 Figure 2 - 689: Client instruction set value extraction rule - Configuration example for text type input
.. 2-1047

 Figure 2 - 690: Client instruction set value extraction rule - Configuration example for select
xxxviii Reference Manual - CEMS 7.2.0

LIST OF FIGURES
.. 2-1048

 Figure 2 - 691: Client instruction set value extraction rule - Objects in Projects view 2-1049

 Figure 2 - 692: Client instruction set value extraction rule - Automatically filled inputs and combo box
.. 2-1050

 Figure 2 - 693: Client instruction set checked extraction rule - Whites pages on US directory website
.. 2-1053

 Figure 2 - 694: Client instruction set checked extraction rule - Configuration example 2-1054

 Figure 2 - 695: Client instruction set checked extraction rule - Object in Projects view 2-1055

 Figure 2 - 696: Client instruction set checked extraction rule - Automatically checked checkbox
.. 2-1056

 Figure 2 - 697: Client instruction click extraction rule - Whites pages on US directory website
.. 2-1059

 Figure 2 - 698: Client instruction click extraction rule - Configuration example 2-1060

 Figure 2 - 699: Client instruction click extraction rule - Object in Projects view 2-1061

 Figure 2 - 700: Client instruction click extraction rule - Automatically validated form 2-1062

 Figure 2 - 701: Remove response cache headers extraction rule - Convertigo website 2-1064

 Figure 2 - 702: Remove response cache headers extraction rule - Cache-related headers present
on Flash resource HTTP response .. 2-1065

 Figure 2 - 703: Remove response cache headers extraction rule - Configuration example ... 2-1066

 Figure 2 - 704: Remove response cache headers extraction rule - Object in Projects view .. 2-1067

 Figure 2 - 705: Remove response cache headers extraction rule - Added and removed headers on
Convertigo Flash banner resource ... 2-1068
xxxix

LIST OF FIGURES
xl Reference Manual - CEMS 7.2.0

LIST OF TABLES

Table 1 - 1: Object Properties table ... 1-2

Table 1 - 2: Sample projects names and their location in the New Project wizard 1-5

Table 2 - 1: sample_documentation_CWI project screen classes 2-431

Table 2 - 2: Panel zone description ... 2-781

Table 2 - 3: Example panel - Zone parameter value ... 2-782

Table 2 - 4: Table zone description ... 2-804

Table 2 - 5: Subfile zone description ... 2-840

Table 2 - 6: newSiteClipperProject project screen classes 2-925

Table 3 - 1: Fields list .. 3-2

Table 3 - 2: Methods list .. 3-4

Table 3 - 3: Context fields list .. 3-14

Table 3 - 4: Context methods list ... 3-15

Table 3 - 5: Interesting methods in Context fields ... 3-18

Table 4 - 1: XML requesters extensions .. 4-5

Table 4 - 2: JSON requesters extensions .. 4-6

Table 4 - 3: Generic engine reserved parameters ... 4-7

Table 4 - 4: JSONP specific engine reserved parameters .. 4-9

Table 4 - 5: Web connector-specific engine reserved parameters .. 4-9

Table 4 - 6: Legacy emulator-specific engine reserved parameters 4-10

Table 4 - 7: Engine reserved parameters for access through Carioca 4-10

Table 4 - 8: Weblib reserved parameters .. 4-11
xli

LIST OF TABLES
Table 4 - 9: SOAP encoding types .. 4-15

Table 5 - 1: Expected result of above code example .. 5-6

Table 5 - 2: Routing Table Action Parameters .. 5-48

Table A - 1: Keycode table ...A-2

Table A - 2: Date format - Usable Symbols ...A-5

Table A - 3: Convertigo paths variables - Usable Symbols ..A-6

Table A - 4: Videotex emulator - Actions table ...A-8

Table A - 5: VT220 emulator - Actions table ..A-8

Table A - 6: Bull emulator - Actions table ...A-8

Table A - 7: IBM emulator - Actions table ..A-9
xlii Reference Manual - CEMS 7.2.0

1 Introducing the
Reference Manual

This chapter presents the purpose of the Reference Manual, as well as key information about

its structure.

 Introduction

 Opening a sample project from the Studio

1.1 Introduction

This Reference Manual is the reference material concerning Convertigo detailed technical

information.

It contains the following chapters:

 "Introducing the Reference Manual" - briefly describes the Reference Manual.

 "Convertigo Objects" - lists and describes all Convertigo objects ordered by groups and,

for each group, by categories, with their properties.

 "JavaScript Objects APIs" - proposes APIs of JavaScript objects that are available in

Convertigo transactions and sequences.

 "Interfaces to Convertigo" - offers technical information about how to access to

Convertigo.

 "Convertigo Templating Framework" - presents in details the Templating framework that

allows to easily connect UIs to the APIs present in Convertigo server (transactions/

sequences) and to template data in the UIs.

 "Internationalization framework" - presents in details the Internationalization framework

that allows to easily develop a multi-language UI.

In the Convertigo Objects chapter, object icons as displayed in the Convertigo studio appear

next to object names. In this chapter, objects are described in three sections:

1 The Object Description section contains a textual description of the object, its purpose.

2 The Object Properties section contains a table listing object properties and how to

configure them:
1 - 1

Chapter "Introducing the Reference Manual"
Opening a sample project from the Studio
3 The Example section contains one or several examples of the described object with

screenshots.

Example use-cases are based upon Convertigo projects that the user can open in the

Convertigo Studio to test live the objects. To open an example project, follow the

procedure described in next section “Opening a sample project from the Studio” on

page 1 - 2.

After the last chapter, you can find "Appendixes" in relation with information about certain

properties of objects.

1.2 Opening a sample project from the Studio

The full example projects are stored in Convertigo installation folder. The following procedure

describes how to access them from the Studio using the New Project wizard.

To open an example project from the Studio

1 If not already opened, run the Convertigo Studio;

2 In the Studio menu bar, select File > New > Project or click on in the toolbar

then select Project.

 Figure 1 - 1: Launching the New Project wizard

A New Project wizard opens.

3 Expand Convertigo Samples and Demos category:

Table 1 - 1: Object Properties table

Column Description

Property Property name

Type Property type (boolean, string, javascript expression, etc.)

Description Property description, how to paramter it
1 - 2 Reference Manual - CEMS 7.2.0

Chapter "Introducing the Reference Manual"
Opening a sample project from the Studio
 Figure 1 - 2: Opening a sample project in New project wizard

4 Expand Reference Manual examples and select the sample project to open

depending on the object example you are consulting (some example projects are not

yet available in Studio, those showing legacy extraction rules for examples):
1 - 3

Chapter "Introducing the Reference Manual"
Opening a sample project from the Studio
 Figure 1 - 3: Selecting appropriate sample project

5 Click on Next, then Finish.

In the case of Sequencer project referencing transactions from another project, a pop-

up indicates that a related project is missing and should be opened before running the

project (for example when opening Steps examples project, the Web Integrator

documentation sample project should also be opened):

 Figure 1 - 4: Pop-up indicating a related project is missing
1 - 4 Reference Manual - CEMS 7.2.0

Chapter "Introducing the Reference Manual"
Opening a sample project from the Studio
6 In this case, open the missing project(s) following the same procedure. Beware that

some projects can be in Convertigo Samples and Demos > Documentation

samples category in the wizard page:

 Figure 1 - 5: Opening missing CWI sample project in wizard

The following table lists the names of all projects that could be referenced by other projects

and their location in the New Project wizard for you to know which project is missing:

Table 1 - 2: Sample projects names and their location in the New Project wizard

Sample project name Location in the New Project wizard

sample_documentation_CLI Convertigo Samples and Demos > Documentation samples > Legacy
integration

sample_documentation_CLP Convertigo Samples and Demos > Documentation samples > Legacy
publishing

sample_documentation_CMC Convertigo Samples and Demos > Documentation samples > Mashup
composition

sample_documentation_CMS Convertigo Samples and Demos > Documentation samples > Mashup
sequencing

sample_documentation_CWC Convertigo Samples and Demos > Documentation samples > Web clipping

sample_documentation_CWI Convertigo Samples and Demos > Documentation samples > Web integration
1 - 5

Chapter "Introducing the Reference Manual"
Opening a sample project from the Studio
In both cases, after opening a missing related project or not, the Reference Manual

example project is then opened in the Studio. You can see its objects by deploying them

in the Projects view:

sample_refManual_http Convertigo Samples and Demos > Reference Manual Examples > HTTP
connector objects examples

sample_refManual_siteClipper Convertigo Samples and Demos > Reference Manual Examples > Site Clipper
objects examples

sample_refManual_statements Convertigo Samples and Demos > Reference Manual Examples > HTML
connector statements examples

sample_refManual_steps Convertigo Samples and Demos > Reference Manual Examples > Sequencer
steps examples

sample_refManual_variables Convertigo Samples and Demos > Reference Manual Examples > Variables
examples

sample_refManual_webClipper Convertigo Samples and Demos > Reference Manual Examples > Web
Clipper objects examples

Table 1 - 2: Sample projects names and their location in the New Project wizard

Sample project name Location in the New Project wizard
1 - 6 Reference Manual - CEMS 7.2.0

Chapter "Introducing the Reference Manual"
Opening a sample project from the Studio
 Figure 1 - 6: Reference Manual steps example project in Projects view
1 - 7

Chapter "Introducing the Reference Manual"
Opening a sample project from the Studio
1 - 8 Reference Manual - CEMS 7.2.0

2 Convertigo Objects

This chapter lists and describes all Convertigo objects ordered by groups and, for each group,

by categories:

 Common

 Mobile Application

 Sequencer

 SAP

 SQL

 CICS

 Web services

 Web

 Legacy

 SiteClipper
2 - 1

Chapter "Convertigo Objects"
Common
2.1 Common
2 - 2 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
2.1.1 Main objects
2 - 3

Chapter "Convertigo Objects"
Common
PROJECT

OBJECT DESCRIPTION

Defines a Convertigo project.

The Project is the basic entity of a Convertigo project. It contains all Convertigo objects needed

for a Convertigo project to run properly:

 connectors,

 screen classes (with criteria, extraction rules and style sheets),

 transactions (with handlers, statements, style sheets, variables and test cases),

 pools,

 sequences (with steps, style sheets, variables and test cases).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Browsers XMLVector expert Defines available browser types.
This property is a table describing browser clients
able to connect to Convertigo. It is used by
Convertigo to choose the proper XSL style sheet
for rendering HTML pages (for example for
Mobile devices).
For each browser signature, the Browsers
definition table contains two columns:
• Keyword: Each keyword is evaluated in turn

by Convertigo. If any keyword set here is
found in the browser signature by
Convertigo, it is considered used by the
client.

• Label: Name of the browser used by the
client.

Note: A new browser definition can be added to
the list using the blue keyboard icon. The
browser definitions defined in the list can be
ordered using the arrow up and arrow down
buttons, or deleted using the red cross icon.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Exported date long standard Specifies the last date the project was exported.
This property is a read-only field containing a
timestamp that is automatically set when saving,
exporting or deploying the project.
It displays the date and time of the last save of
the project.
Note: When clicking on this property in the
Properties view, you can see the exact
timestamp value.
2 - 4 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
EXAMPLES

The Convertigo Studio includes several sample projects described in Getting started tutorials,

each corresponding to a module of the Convertigo Enterprise Mobility Server solution:

HTTP session
timeout

int standard Defines the inactivity time (in seconds) of
incoming HTTP sessions.
If no requests are sent from the same user on the
project for the set lifetime, Convertigo
automatically removes any context existing for
this user and frees memory.
When the context is freed, the End Transaction
defined for the connector is automatically
executed. You can set in this transaction any
clean up code as a logout transaction to logout
from the target application.

Namespace URI String expert Defines the project's namespace URI to use in
XSD and WSDL files.
If this property is left empty, the default
Convertigo project's namespace URI is used:
http://www.convertigo.com/
convertigo/projects/<project_name>
with <project_name> the name of the current
project.

Version String standard Defines the project's version.
This property is an editable field that allows the
project's developer to set a project's version. The
project version syntax is free, the developer can
use it the way he wants.
When exporting the project as an archive (.car)
or deploying the project (on a server for
example), the Convertigo Studio user interface
proposes to the developer to update this project's
version number field. It helps the developer to not
forget editing it before a project's delivery.

WSDL inline schemas boolean expert Specifies whether the project's WSDL should be
generated by including schemas or not.
The WSDL describing the services can import the
schemas defined in a separate file or can
describe inline these schemas.
This property allows to specify the way the
Convertigo developer wants schemas for the
project's WSDL.

WSDL style WsdlStyle expert Defines the project's WSDL style to use for the
project (DOC/LITERAL, RPC, ALL).

Property Type Category Description
2 - 5

Chapter "Convertigo Objects"
Common

 Figure 2 - 1: Project - Documentation sample projects in Projects view

The following description is an example of sample_documentation_CLI Project set on the

"Starting with Convertigo Legacy Integrator" tutorial:

Project [

comment="Legacy Integration project"

HTTP session timeout=300

browsers=[]

WSDL inline schemas=true

WSDL style=DOC/LITERAL

]

These parameters are edited in the Properties view of the Convertigo Studio:

You can find the complete example projects in the Studio. To open these
projects, refer to the procedure described in each Getting started tutorial
or the procedure “Opening a sample project from the Studio”, choosing to
open Convertigo Samples and Demos > Documentation samples >
either of the available projects in the New Project wizard.
2 - 6 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 2: Project - Configuration example

The HTTP session timeout is set to 300 seconds by default, meaning that the session ends

when no request is sent for 300 seconds. No browser has been defined in the Browsers

property.

In case of at least one transaction set as public method in this project, it is exposed as a SOAP

Web service (see the "Starting with Convertigo Legacy Integrator" tutorial for more information

about exposing a project as a SOAP Web service). In this case, WSDL inline schemas

property set to true implies that the transactions schemas are recopied from the XSD schema

file to the WSDL, and not in the imported separate XSD file only. The WSDL style properties

set to DOC/LITERAL defines the WSDL generation style, by opposition to RPC/ENCODED.
2 - 7

Chapter "Convertigo Objects"
Common
TEST CASE

OBJECT DESCRIPTION

Defines a transaction's or sequence's test case.

A Test Case is a set of variables with predefined values. It allows testing its parent transaction

or sequence in any particular case.

Test Cases are based on Test single-valued variable and Test multi-valued variable variables

which are used as input when executing the tested transaction or sequence.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the searchGoogle transaction set in the context of the "Starting with

Convertigo Web Integrator" tutorial. This transaction, which defines one variable called

keyword, searches for this keyword in Google search engine and accumulates the results

into an XML structure thanks to a Table extraction rule.

A Test Case is defined on the searchGoogle transaction in order to test a case of variable

value. A Test Case object has no properties to configure:

Test Case [

]

It appears as follows in the Properties view of the Convertigo Studio:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Web Integrator" tutorial or the procedure “Opening a sample project from
the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Web integration in the New Project wizard.
2 - 8 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 3: Test Case - Configuration example

The Test Case object, named Default_Test_Case, is created in the Test cases folder of

the transaction, and appears as follows in the Projects view:

 Figure 2 - 4: Test Case - Test Case object in Projects view

To complete the Test Case, a Test single-value variable is added, imported from the

transaction’s variables. For more information about Test single-valued variable, see "Test

single-valued variable" documentation and examples.

Switch to a web browser displaying the test platform of this project. The test platform shows

the searchGoogle transaction, with its keyword variable and empty default value. It also

shows the Default_Test_Case Test Case (among other) with its variable and the test

default value:
2 - 9

Chapter "Convertigo Objects"
Common
 Figure 2 - 5: Test Case - Test Case object in test platform

At runtime, Test variable (with its default value) is inserted into the JavaScript scope of the

transaction. Thus, when running the Default_Test_Case Test Case (by clicking on the

Execute button), the searchGoogle transaction is executed with the test variable default

value "convertigo cliplet". The result is displayed in the Execution result panel:
2 - 10 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 6: Test Case - Test Case execution result in test platform
2 - 11

Chapter "Convertigo Objects"
Common
STYLE SHEET

OBJECT DESCRIPTION

Defines an XSL style sheet.

Style sheets are associated with screen classes or transactions and with sequences. They are

used to define the display of data collected by the transaction or sequence, by performing a

transformation of transaction or sequence XML outputs.

Moreover, Style sheets allow the Convertigo developer to manage the user interface's display

depending on the client browser.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the searchGoogle transaction set in the context of the "Starting With

Convertigo Web Integrator" tutorial. This transaction, which defines one variable called

keyword, searches for this keyword in Google search engine and accumulates the results

into an XML structure thanks to a Table extraction rule.

When no Style sheet is attached to the searchGoogle transaction, its XML output is

displayed in plain XML (here, in the test platform):

Property Type Category Description

Browser String standard Defines the target browser (* means all
browsers).
This property allows to define on which browser
the Style sheet has to be applied. The list of
available browsers is declared in the project's
Browsers property.
One Style sheet can be created for each
declared browser on the same parent object
(screen class, transaction or sequence).

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

URL String standard Defines the Style sheet URL (relative or
absolute).
This property allows to define the path to the XSL
file represented by this Style sheet object.

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Web Integrator" tutorial or the procedure “Opening a sample project from
the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Web integration in the New Project wizard.
2 - 12 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 7: Style sheet - Transaction result with no stylesheet attached

In more details:
2 - 13

Chapter "Convertigo Objects"
Common
 Figure 2 - 8: Style sheet - Transaction result with no stylesheet attached (zoom)

To manage the results display, a Style sheet object is created with the following parameters:

Style sheet [

browser=*

URL="results.xsl"

]

The Style sheet object is created in the Sheets folder of the transaction, and appears as

follows in the Projects view:
2 - 14 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 9: Style sheet - Style sheet object in Projects view

Its parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 10: Style sheet - Configuration example

The URL property is relative to the project directory. It is set with no parent path, meaning that

the style sheet file has to be stored at the root of the project directory.

To finish the configuration of the Style sheet displaying the transaction’s output XML, two steps

are performed:

 creating and editing the results.xsl file on which is pointing the Style sheet object,

 setting the transaction Style sheet property to use the defined Style sheet object.

Creating the XSL file
2 - 15

Chapter "Convertigo Objects"
Common
The results.xsl file is defined by the Style sheet object to be the style sheet performing the

XSL transformation of the searchGoogle transaction XML output.

A results.xsl file is created in the project folder:

 Figure 2 - 11: Style sheet - Creating results.xsl file on project root folder

It is then edited so that results are layed out in two columns headed by a title:

 Figure 2 - 12: Style sheet - Editing results.xsl file

Setting the transaction property
2 - 16 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
For the transaction to use the Style sheet object defined in its sheets folder, its Style sheet

property has to be set from None to From transaction:

Transaction [

style sheet=From transaction

]

This parameter is edited in the Properties view of the Convertigo Studio:

 Figure 2 - 13: Style sheet - Transaction configuration example

Now all configuration is finished, when the transaction is executed again, results are displayed

as required thanks to the XML transformation:
2 - 17

Chapter "Convertigo Objects"
Common
 Figure 2 - 14: Style sheet - Transaction result displayed thanks to results.xsl stylesheet
2 - 18 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
POOL

OBJECT DESCRIPTION

Creates a pool for a given Javelin connector.

A Pool is a set of preloaded Convertigo contexts on a defined connector.

When the Convertigo engine starts, the pool's contexts are loaded, executing a starting

transaction defined in the properties.

Thanks to the execution of the starting transaction, the pool's contexts are led to a steady

state.

Notes:

 The steady state can be defined as a particular screen class that has to be reached by the

connector (Javelin screen class).

 Defining a pool is useful for performance optimization, in that it allows accessing to pre-

established and advanced connections with the host.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Connection address String standard Replaces the connection address (optional).
If defined, this property overrides the connection
address set as connector parameter for the
loaded contexts.
2 - 19

Chapter "Convertigo Objects"
Common
EXAMPLES

The following is an example of Pool set on a Screen connector connecting to an IBM 5250

legacy application:

Pool [

connection address=""

initial screen class=ASMENU_mode

number of contexts=3

Initial screen class String standard Defines the steady state screen class.
On connectors for which it applies (Javelin
connector), this property allows to define the
steady state screen class.
This initial screen class has several implications:
• it's the screen class that must be reached by

the context thanks to the starting
transaction execution,

• the transactions that are executed thereafter
on one of the pool's contexts must lead back
to this screen class to let the context in
steady state for a further use.

If you want to realize non-atomic calls, i.e. call
several successive transactions on the same
context without restoring the context's steady
state between calls, it is possible to lock the
context by setting the
context.lockPooledContext property to
true.
Note: be sure to reset the
context.lockPooledContext property to
false at the end of your non atomic calls,
otherwise this locked context will remain
unavailable.

Number of contexts int standard Defines the size of the pool.
This property defines the number of contexts to
load for this pool.

Starting transaction String standard Defines the transaction to be automatically
executed when loading the Convertigo context.
This transaction must lead the connector to a
steady state (a particular screen class).

Starting transaction
variables

XMLVector standard Defines the starting transaction variables.
This property allows to define a list of variables
that will be sent to the starting transaction
executed on each context.
For each variable, you have to describe three
properties:
• Context number: number between 1 and the

size of the pool (defined in the the Number
of contexts property). The variable will be
sent with the associated value only for this
context number. To define a variable for all
loaded contexts, this property can take the
following value: *.

• Parameter name: name of the variable.
• Parameter value:value of the variable.
Note: A new variable can be added to the list
using the blue keyboard icon. The variables
defined in the list can be ordered using the arrow
up and arrow down buttons, or deleted using the
red cross icon.

Property Type Category Description
2 - 20 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
starting transaction=loginTransaction

starting transaction variables=[[*, login, "user"],

[*,password, "test"]]

]

The Pool object is created in the Pools folder of the screen connector, and appears as follows

in the Projects view:

 Figure 2 - 15: Pool - Pool object in Projects view

Its parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 16: Pool - Configuration example

Starting transaction variables property is edited in the associated editor:
2 - 21

Chapter "Convertigo Objects"
Common
 Figure 2 - 17: Pool - Starting transaction variables property edition

In Convertigo Server Administration, we can see the three contexts that are loaded by the

declared Pool:

 Figure 2 - 18: Pool - Connexions in Convertigo Server Administration
2 - 22 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
2.1.2 Variables
2 - 23

Chapter "Convertigo Objects"
Common
REQUESTABLE VARIABLES
2 - 24 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
REQUEST SINGLE-VALUED VARIABLE

OBJECT DESCRIPTION

Defines a single-valued variable for a transaction/sequence.

A Request single-valued variable declares a variable which accepts a unique value to a

transaction/sequence.

This variable is dedicated to the following transaction/sequence objects, except for HTTP-

based transactions which use more specific variables:

 Generic Sequence,

 Javelin transaction,

 SQL transaction,

 Site Clipper transaction.

This variable object can define a default value, specified in the Default value property, that is

used if no value is found for this variable.

At runtime, the variable value is calculated by Convertigo through the following steps:

 the value is received in the request to the transaction/sequence,

 if no value is received for this variable, the JavaScript value of the variable is chosen, if a

variable of the same name exists in the JavaScript scope of current context,

 if no JavaScript value is defined, the context value of the variable is chosen, if a variable of

the same name is stored in current context,

 if none of the previous methods gives a value, the default value is used,

 if no default value is specified, the variable is not defined and an Exception can be thrown

when trying to access its value in the core of the transaction/sequence.

Note: In Convertigo Studio, when a Request single-valued variable is created in a transaction/

sequence, it can be easily replaced by a Request multi-valued variable, using the right-click

menu on the variable and choosing the option Change to > MultiValued variable.

OBJECT PROPERTIES

The table below describes the object properties:
2 - 25

Chapter "Convertigo Objects"
Common
Property Type Category Description

Cache key boolean expert Defines whether the variable should be part of
the cache key.
If set to true, the variable and its value are
added to the cache key which is used to
determine whether the transaction's response (or
sequence's response) should be pulled from the
cache or not.
A transaction's cached response (or sequence's
cached response) is pulled from the cache when
all cache key values are corresponding to a
stored cache entry (may contain other data that
variables, for example the certificate group
defined by some transactions).

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Customizable boolean expert Defines whether the variable is customizable.
If set to true, the variable is used as a
customizable preference field in the widget
generated from the parent transaction (or
sequence) in Convertigo Mashup Composer or
any other portal.
Note: This property is used when applicable, i.e.
when the widget is declared in a portal including
customizable preference fields feature.

Default value Object standard Defines the variable's default value(s).
This property allows defining a default value or
default list of values to use when no variable
value is provided to the parent transaction (or
sequence).
A variable is always created with a default value
set to null, which means that the variable is
only declared and has no default value.
At run time, Convertigo looks for the variable
among the query parameters, the JavaScript
scope or the objects in the context to retrieve its
value. If the variable is found, its value is used, if
not found, the default value specified by this
property is used.
In this last case, and if the default value of the
variable is not set (Default value property set to
null), an exception can be thrown by any object
or JavaScript code trying to use the undefined
variable.
It is up to the Convertigo developer to unset the
variable's null value, i.e. to set a default value
to the variable. He should prefer using a Test
Case to test specific values for the variable or
pass a variable value directly when invoking the
transaction (or sequence).
Note: To unset the null value of the property,
click on the cross-shaped button in the field.
Then, the default value is an empty string. You
can use it as is or add a value.

Description String standard Describes the variable.
This property is used to describe the variable in
the widget generated from its parent transaction
(or sequence) in Convertigo Mashup Composer.
2 - 26 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
EXAMPLES

Transaction or sequence objects may use variables useful for their execution process. To

explain the best use of these variables and their overrides, the following examples are based

on a Convertigo Mashup Sequencer project named sample_refManual_variables.

Is a file upload boolean expert Defines whether the variable is an uploaded file.
When set to true, this property indicates that the
transaction/sequence should receive an
uploaded file in this variable.
When received, the uploaded file is stored in a
temporary folder and deleted at the end of the
transaction/sequence. In the transaction/
sequence execution context, the variable
contains the path of the temporary file.
Note: This property value is used only by the Test
Platform to allow the developer testing the
transaction/sequence. When receiving a multi-
part request, Convertigo can set any variable as
an uploaded file.

Schema type QName XmlQName expert Assigned schema type qualified name

Visibility int standard Defines the variable's visibility.
This property allows defining whether the
variable's value is masked or not in:
• log files: selecting this option will mask

the variable's value that may be printed in all
loggers,

• studio user interface: selecting this
option will mask the variable's value in the
Properties view from the Studio, as well as
in the tree of the Projects view,

• platform user interface: selecting this
option will mask the variable's value in the
test platform of the project and when editing
the project in Convertigo web administration,

• project's XML files: selecting this
option will mask the variable's value in the
project's XML files generated on the file
system when saving the objects from the
project.

Any combination of these options can be chosen,
it allows to customize precisely the variable's
value display. A last option is available: Mask
value in all. Selecting this option will mask
the variable's value in all previously described
cases.

WSDL exposed boolean expert Defines whether the variable is exposed in web
service.
If set to true, variable definition is inserted in the
project's WSDL as a method parameter.
Note: This property value is ignored if the Public
method property of the parent transaction (or
sequence) is set to false, which means the
method itself is not exposed in the web service.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Variables examples in the New
Project wizard.

Property Type Category Description
2 - 27

Chapter "Convertigo Objects"
Common
Let's consider we'd like to retrieve some user's details on a login process to return a welcoming

message. Let's also assume that these details should be passed as input by the caller and are

mandatory.

Example 1

A very simple Generic Sequence, named userLoginWithDefault, is created with a unique

jElement step which writes a <login> XML element containing a message into the

sequence's XML response.

To retrieve user’s details from the caller to write them in the welcoming message, this

sequence declares two variables:

 a Request single-valued variable, named lastName, with the following parameters:

Request single-valued variable [

Default value="User"

]

 a Request multi-valued variable, named firstNames, with the following parameters:

Request multi-valued variable [

Default value=["Anonymous"]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 19: Request single-valued variable - Configuration example
2 - 28 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 20: Request multi-valued variable - Configuration example

To meet the specifications, this sequence handles a default case where user's details are not

provided. Thus, the Default value properties of both variables are set to fixed values (not

null). For the Request multi-valued variable, it is edited in the Array editor:

 Figure 2 - 21: Request multi-valued variable - Default value property in Array editor

The sequence with its variables is created in the Sequences folder of the project and appears

as follows in the Projects view:
2 - 29

Chapter "Convertigo Objects"
Common
 Figure 2 - 22: Request single-valued and multi-valued variables - Sequence and Request variables in Projects view

The JavaScript expression evaluated by the <login> message jElement step is:

"Welcome "+ firstNames[0] +" "+ lastName

This quite simple JavaScript expression leads, at runtime, to generate a message with the first

firstname and the lastname of the user. For more information about jElement step, see

"jElement" object documentation and examples.

At runtime, sequence variables (with their default values) are inserted into the JavaScript

scope of the context. Thus, while executing the sequence in the Studio, the above expression

don't throw any Exception and the following XML is returned (see XML tab of the sequence

editor):

<?xml version="1.0" encoding="ISO-8859-1"?>

<document connector=""

context="studio_TestVariables:userLoginWithDefault"

contextId="studio_TestVariables:userLoginWithDefault"

fromcache="false" generated="Wed Apr 20 18:21:12 CEST 2011"

project="TestVariables" sequence="userLoginWithDefault"

signature="1303316472447" transaction="" version="5.5.0_alpha">

<login>Welcome Anonymous User</login>

</document>

The sequence is fully implemented and ready to be tested. Let's switch to a web browser

displaying the test platform of the project.

The sequence is presented with its variables already prefilled by their default values:
2 - 30 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 23: Request single-valued and multi-valued variables - Sequence and variables in test platform

Several modifications can be performed on the test platform to test the sequence execution.

We can modify the lastName variable value, let’s replace the "User" value to "Person", and

we can uncheck the firstNames variable checkbox, for this variable not to be sent to the

sequence call.

 Figure 2 - 24: Request single-valued and multi-valued variables - Sequence and variables in test platform after testing
modifications

Test the sequence with updated variables by clicking on the Execute button. The sequence is

executed and the following XML is returned as result in the Execution result panel:

 Figure 2 - 25: Request single-valued and multi-valued variables - Sequence execution result in test platform
2 - 31

Chapter "Convertigo Objects"
Common
The <login> message is different from the Studio execution, modified by the sequence

execution to: "Welcome Anonymous Person".

WHAT HAPPENED?

The lastName variable was sent to the sequence as a request parameter, thus its default

value was overridden with the received value.

The firstNames variable was not sent to the sequence, thus its default value ("Anonymous")

was used.

If none of the two variables were sent, the message would remain unchanged.

Example 2

Unlike the previous one, this example does not handle a default case. Here, we force the user

to give the required details by sending back an error message if necessary.

A Generic Sequence, named userLogin, is created with a jIfThenElse step which checks for

the lastName and firstNames variables values validity. Depending on the result, a

<login> or an <error> XML element containing a message is written into the sequence's

XML response.

To retrieve user’s details from the caller to write them in one of the messages, this sequence

declares two variables:

 a Request single-valued variable, named lastName, with the following parameters:

Request single-valued variable [

Default value=null

]

 a Request multi-valued variable, named firstNames, with the following parameters:

Request multi-valued variable [

Default value=[null]

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 32 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 26: Request single-valued variable - Configuration example

 Figure 2 - 27: Request multi-valued variable - Configuration example

The Default value properties are left to null values, meaning variables are just declared.
2 - 33

Chapter "Convertigo Objects"
Common
This sequence with its variables is created in the Sequences folder of the project and appears

as follows in the Projects view:

 Figure 2 - 28: Request single-valued and multi-valued variables - Sequence and Request variables in Projects view

The JavaScript expression evaluated by the jIfThenElse step is:

if(lastName!=null && firstName!=null)

At runtime, variables (with their default values) are inserted into the JavaScript scope of the

context. Thus, while executing the sequence in the Studio, the above expression is not verified

and the following XML is returned (see XML tab of the sequence editor):

<?xml version="1.0" encoding="ISO-8859-1"?>

<document connector="" context="studio_TestVariables:userLogin"

contextId="studio_TestVariables:userLogin" fromcache="false"

generated="Thu Apr 21 10:56:25 CEST 2011" project="TestVariables"

sequence="userLogin" signature="1303376185017" transaction=""

version="5.5.0_alpha">

<error>firstname is required, lastname is required</error>

</document>

The sequence is fully implemented and ready to be tested. Let's switch to a web browser

displaying the test platform of the project.

The sequence is presented with its variables already prefilled by empty default values:
2 - 34 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 29: Request single-valued and multi-valued variables - Sequence and variables in test platform

Several modifications can be performed on the test platform to test the sequence execution.

We can modify the lastName variable value, let’s replace the empty string by "User" value,

and we can uncheck the firstNames variable checkbox, for this variable not to be sent to the

sequence call.

 Figure 2 - 30: Request single-valued and multi-valued variables - Sequence and variables in test platform after testing
modifications

Test the sequence with updated variables by clicking on the Execute button. The sequence is

executed and the following XML is returned as result in the Execution result panel:

 Figure 2 - 31: Request single-valued and multi-valued variables - Sequence execution result in test platform

An <error> message is returned, different from the Studio execution, modified by the

sequence: "firstname is required".
2 - 35

Chapter "Convertigo Objects"
Common
WHAT HAPPENED?

The lastName variable was sent to the sequence as a request parameter, thus its default

value was overridden with the received value.

The firstNames variable was not sent to the sequence, thus its default value (null) was

used, making the test step fail.

For a second test, we can modify both variables values, checking the firstNames variable

checkbox for this variable to be sent to the sequence call and replacing its empty string by

"Name" value.

 Figure 2 - 32: Request single-valued and multi-valued variables - Sequence and variables in test platform after testing
modifications

Test the sequence with updated variables by clicking on the Execute button. The sequence is

executed and the following XML is returned as result in the Execution result panel:

 Figure 2 - 33: Request single-valued and multi-valued variables - Sequence execution result in test platform

A <login> message is returned, different from the previous execution, modified by the

sequence: "Welcome Name User".

WHAT HAPPENED?
2 - 36 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
Both of the variables are sent to the sequence as request parameters, thus their default values

are overridden with the received values, making the test succeed.

CONCLUSION

Using prefilled default value for a variable rather than the null value depends on the

transaction or sequence purpose. We suggest the second solution as it is more constraining

and will better help Convertigo developers develop their projects. Moreover, Test Cases can

be used to test any particular case of transaction or sequence variables values.
2 - 37

Chapter "Convertigo Objects"
Common
REQUEST MULTI-VALUED VARIABLE

OBJECT DESCRIPTION

Defines a multi-valued variable for a transaction/sequence.

A Request multi-valued variable declares a variable which accepts one or more values to a

transaction/sequence.

This variable is dedicated to the following transaction/sequence objects, except for HTTP-

based transactions which use more specific variables:

 Generic Sequence,

 Javelin transaction,

 SQL transaction,

 Site Clipper transaction.

This variable object can define a default list of value(s), specified in the Default value property,

that is used if no value is is found for this variable.

At runtime, the variable values are calculated by Convertigo through the following steps:

 the values are received in the request to the transaction/sequence,

 if no value is received for this variable, the JavaScript value of the variable is chosen, if a

variable of the same name exists in the JavaScript scope of current context (this

JavaScript variable should be an array of values),

 if no JavaScript value is defined, the context value of the variable is chosen, if a variable of

the same name is stored in current context,

 if none of the previous methods gives values, the default list of values is used,

 if no default value is specified, the variable is not defined and an Exception can be thrown

when trying to access its values in the core of the transaction/sequence.

Note: In Convertigo Studio, when a Request multi-valued variable is created in a transaction/

sequence, it can be easily replaced by a Request single-valued variable, using the right-click

menu on the variable and choosing the option Change to > SingleValued variable.

OBJECT PROPERTIES

The table below describes the object properties:
2 - 38 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
Property Type Category Description

Cache key boolean expert Defines whether the variable should be part of
the cache key.
If set to true, the variable and its value are
added to the cache key which is used to
determine whether the transaction's response (or
sequence's response) should be pulled from the
cache or not.
A transaction's cached response (or sequence's
cached response) is pulled from the cache when
all cache key values are corresponding to a
stored cache entry (may contain other data that
variables, for example the certificate group
defined by some transactions).

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Customizable boolean expert Defines whether the variable is customizable.
If set to true, the variable is used as a
customizable preference field in the widget
generated from the parent transaction (or
sequence) in Convertigo Mashup Composer or
any other portal.
Note: This property is used when applicable, i.e.
when the widget is declared in a portal including
customizable preference fields feature.

Default value Object standard Defines the variable's default value(s).
This property allows defining a default value or
default list of values to use when no variable
value is provided to the parent transaction (or
sequence).
A variable is always created with a default value
set to null, which means that the variable is
only declared and has no default value.
At run time, Convertigo looks for the variable
among the query parameters, the JavaScript
scope or the objects in the context to retrieve its
value. If the variable is found, its value is used, if
not found, the default value specified by this
property is used.
In this last case, and if the default value of the
variable is not set (Default value property set to
null), an exception can be thrown by any object
or JavaScript code trying to use the undefined
variable.
It is up to the Convertigo developer to unset the
variable's null value, i.e. to set a default value
to the variable. He should prefer using a Test
Case to test specific values for the variable or
pass a variable value directly when invoking the
transaction (or sequence).
Note: To unset the null value of the property,
click on the cross-shaped button in the field.
Then, the default value is an empty string. You
can use it as is or add a value.

Description String standard Describes the variable.
This property is used to describe the variable in
the widget generated from its parent transaction
(or sequence) in Convertigo Mashup Composer.
2 - 39

Chapter "Convertigo Objects"
Common
EXAMPLES

Transaction or sequence objects may use variables useful for their execution process. To

explain the best use of these variables and their overrides, the following examples are based

Is a file upload boolean expert Defines whether the variable is an uploaded file.
When set to true, this property indicates that the
transaction/sequence should receive an
uploaded file in this variable.
When received, the uploaded file is stored in a
temporary folder and deleted at the end of the
transaction/sequence. In the transaction/
sequence execution context, the variable
contains the path of the temporary file.
Note: This property value is used only by the Test
Platform to allow the developer testing the
transaction/sequence. When receiving a multi-
part request, Convertigo can set any variable as
an uploaded file.

Schema type QName XmlQName expert Assigned schema type qualified name

Soap array boolean standard Defines if the multi-valued variable should be
seen as a Soap Array of a occurrence of
variables.
In the case of transaction or sequence defined as
a public SOAP method, this property allows to
specify of the current multi-valued variable has to
be seen in SOAP envelope as a Soap Array with
multiple values inside it or as an occurrence of
identical variables.

Visibility int standard Defines the variable's visibility.
This property allows defining whether the
variable's value is masked or not in:
• log files: selecting this option will mask

the variable's value that may be printed in all
loggers,

• studio user interface: selecting this
option will mask the variable's value in the
Properties view from the Studio, as well as
in the tree of the Projects view,

• platform user interface: selecting this
option will mask the variable's value in the
test platform of the project and when editing
the project in Convertigo web administration,

• project's XML files: selecting this
option will mask the variable's value in the
project's XML files generated on the file
system when saving the objects from the
project.

Any combination of these options can be chosen,
it allows to customize precisely the variable's
value display. A last option is available: Mask
value in all. Selecting this option will mask
the variable's value in all previously described
cases.

WSDL exposed boolean expert Defines whether the variable is exposed in web
service.
If set to true, variable definition is inserted in the
project's WSDL as a method parameter.
Note: This property value is ignored if the Public
method property of the parent transaction (or
sequence) is set to false, which means the
method itself is not exposed in the web service.

Property Type Category Description
2 - 40 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
on a Convertigo Mashup Sequencer project named sample_refManual_variables.

Let's consider we'd like to retrieve some user's details on a login process to return a welcoming

message. Let's also assume that these details should be passed as input by the caller and are

mandatory.

Example 1

A very simple Generic Sequence, named userLoginWithDefault, is created with a unique

jElement step which writes a <login> XML element containing a message into the

sequence's XML response.

To retrieve user’s details from the caller to write them in the welcoming message, this

sequence declares two variables:

 a Request single-valued variable, named lastName, with the following parameters:

Request single-valued variable [

Default value="User"

]

 a Request multi-valued variable, named firstNames, with the following parameters:

Request multi-valued variable [

Default value=["Anonymous"]

]

These parameters are edited in the Properties view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Variables examples in the New
Project wizard.
2 - 41

Chapter "Convertigo Objects"
Common
 Figure 2 - 34: Request single-valued variable - Configuration example

 Figure 2 - 35: Request multi-valued variable - Configuration example

To meet the specifications, this sequence handles a default case where user's details are not

provided. Thus, the Default value properties of both variables are set to fixed values (not
2 - 42 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
null). For the Request multi-valued variable, it is edited in the Array editor:

 Figure 2 - 36: Request multi-valued variable - Default value property in Array editor

The sequence with its variables is created in the Sequences folder of the project and appears

as follows in the Projects view:

 Figure 2 - 37: Request single-valued and multi-valued variables - Sequence and Request variables in Projects view

The JavaScript expression evaluated by the <login> message jElement step is:

"Welcome "+ firstNames[0] +" "+ lastName

This quite simple JavaScript expression leads, at runtime, to generate a message with the first

firstname and the lastname of the user. For more information about jElement step, see

"jElement" object documentation and examples.

At runtime, sequence variables (with their default values) are inserted into the JavaScript

scope of the context. Thus, while executing the sequence in the Studio, the above expression

don't throw any Exception and the following XML is returned (see XML tab of the sequence

editor):

<?xml version="1.0" encoding="ISO-8859-1"?>

<document connector=""
2 - 43

Chapter "Convertigo Objects"
Common
context="studio_TestVariables:userLoginWithDefault"

contextId="studio_TestVariables:userLoginWithDefault"

fromcache="false" generated="Wed Apr 20 18:21:12 CEST 2011"

project="TestVariables" sequence="userLoginWithDefault"

signature="1303316472447" transaction="" version="5.5.0_alpha">

<login>Welcome Anonymous User</login>

</document>

The sequence is fully implemented and ready to be tested. Let's switch to a web browser

displaying the test platform of the project.

The sequence is presented with its variables already prefilled by their default values:

 Figure 2 - 38: Request single-valued and multi-valued variables - Sequence and variables in test platform

Several modifications can be performed on the test platform to test the sequence execution.

We can modify the lastName variable value, let’s replace the "User" value to "Person", and

we can uncheck the firstNames variable checkbox, for this variable not to be sent to the

sequence call.

 Figure 2 - 39: Request single-valued and multi-valued variables - Sequence and variables in test platform after testing
modifications

Test the sequence with updated variables by clicking on the Execute button. The sequence is

executed and the following XML is returned as result in the Execution result panel:
2 - 44 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 40: Request single-valued and multi-valued variables - Sequence execution result in test platform

The <login> message is different from the Studio execution, modified by the sequence

execution to: "Welcome Anonymous Person".

WHAT HAPPENED?

The lastName variable was sent to the sequence as a request parameter, thus its default

value was overridden with the received value.

The firstNames variable was not sent to the sequence, thus its default value ("Anonymous")

was used.

If none of the two variables were sent, the message would remain unchanged.

Example 2

Unlike the previous one, this example does not handle a default case. Here, we force the user

to give the required details by sending back an error message if necessary.

A Generic Sequence, named userLogin, is created with a jIfThenElse step which checks for

the lastName and firstNames variables values validity. Depending on the result, a

<login> or an <error> XML element containing a message is written into the sequence's

XML response.

To retrieve user’s details from the caller to write them in one of the messages, this sequence

declares two variables:

 a Request single-valued variable, named lastName, with the following parameters:

Request single-valued variable [

Default value=null

]

 a Request multi-valued variable, named firstNames, with the following parameters:

Request multi-valued variable [

Default value=[null]
2 - 45

Chapter "Convertigo Objects"
Common
]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 41: Request single-valued variable - Configuration example

 Figure 2 - 42: Request multi-valued variable - Configuration example
2 - 46 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
The Default value properties are left to null values, meaning variables are just declared.

This sequence with its variables is created in the Sequences folder of the project and appears

as follows in the Projects view:

 Figure 2 - 43: Request single-valued and multi-valued variables - Sequence and Request variables in Projects view

The JavaScript expression evaluated by the jIfThenElse step is:

if(lastName!=null && firstName!=null)

At runtime, variables (with their default values) are inserted into the JavaScript scope of the

context. Thus, while executing the sequence in the Studio, the above expression is not verified

and the following XML is returned (see XML tab of the sequence editor):

<?xml version="1.0" encoding="ISO-8859-1"?>

<document connector="" context="studio_TestVariables:userLogin"

contextId="studio_TestVariables:userLogin" fromcache="false"

generated="Thu Apr 21 10:56:25 CEST 2011" project="TestVariables"

sequence="userLogin" signature="1303376185017" transaction=""

version="5.5.0_alpha">

<error>firstname is required, lastname is required</error>

</document>

The sequence is fully implemented and ready to be tested. Let's switch to a web browser

displaying the test platform of the project.

The sequence is presented with its variables already prefilled by empty default values:
2 - 47

Chapter "Convertigo Objects"
Common
 Figure 2 - 44: Request single-valued and multi-valued variables - Sequence and variables in test platform

Several modifications can be performed on the test platform to test the sequence execution.

We can modify the lastName variable value, let’s replace the empty string by "User" value,

and we can uncheck the firstNames variable checkbox, for this variable not to be sent to the

sequence call.

 Figure 2 - 45: Request single-valued and multi-valued variables - Sequence and variables in test platform after testing
modifications

Test the sequence with updated variables by clicking on the Execute button. The sequence is

executed and the following XML is returned as result in the Execution result panel:

 Figure 2 - 46: Request single-valued and multi-valued variables - Sequence execution result in test platform

An <error> message is returned, different from the Studio execution, modified by the

sequence: "firstname is required".
2 - 48 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
WHAT HAPPENED?

The lastName variable was sent to the sequence as a request parameter, thus its default

value was overridden with the received value.

The firstNames variable was not sent to the sequence, thus its default value (null) was

used, making the test step fail.

For a second test, we can modify both variables values, checking the firstNames variable

checkbox for this variable to be sent to the sequence call and replacing its empty string by

"Name" value.

 Figure 2 - 47: Request single-valued and multi-valued variables - Sequence and variables in test platform after testing
modifications

Test the sequence with updated variables by clicking on the Execute button. The sequence is

executed and the following XML is returned as result in the Execution result panel:

 Figure 2 - 48: Request single-valued and multi-valued variables - Sequence execution result in test platform

A <login> message is returned, different from the previous execution, modified by the

sequence: "Welcome Name User".

WHAT HAPPENED?
2 - 49

Chapter "Convertigo Objects"
Common
Both of the variables are sent to the sequence as request parameters, thus their default values

are overridden with the received values, making the test succeed.

CONCLUSION

Using prefilled default value for a variable rather than the null value depends on the

transaction or sequence purpose. We suggest the second solution as it is more constraining

and will better help Convertigo developers develop their projects. Moreover, Test Cases can

be used to test any particular case of transaction or sequence variables values.
2 - 50 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
HTTP SINGLE-VALUED VARIABLE (REQUESTABLE VARIABLES)

OBJECT DESCRIPTION

Defines a single-valued variable for an HTTP-based transaction.

An HTTP single-valued variable declares a variable which accepts a unique value to an HTTP-

based transaction.

This variable is dedicated to HTTP-based transactions only:

 HTTP transaction,

 XML HTTP transaction,

 JSON HTTP transaction,

 HTML transaction.

This variable object allows defining HTTP request parameter through the HTTP name and

HTTP method properties.

It can define a default value, specified in the Default value property, that is used as HTTP

parameter value if no value is found for this variable.

At runtime, the HTTP parameter value is calculated by Convertigo through the following steps:

 the value is received in the request to the transaction,

 if no value is received for this variable, the JavaScript value of the variable is chosen, if a

variable of the same name exists in the JavaScript scope of current context,

 if no JavaScript value is defined, the context value of the variable is chosen, if a variable of

the same name is stored in current context,

 if none of the previous methods gives a value, the default value is used,

 if no default value is specified, the variable is not defined and an Exception can be thrown

when trying to access its value in the core of the transaction.

Notes:

 In Convertigo Studio, when an HTTP single-valued variable is created in a transaction/

sequence, it can be easily replaced by an HTTP multi-valued variable, using the right-click

menu on the variable and choosing the option Change to > MultiValued variable.

 HTTP connector supports OAuth authentication. To enable OAuth, you simply need to

provide four variables to any kind of HTTP transaction: __header_oAuthKey,

__header_oAuthSecret, __header_oAuthToken and

__header_oAuthTokenSecret. For more information about OAuth in HTTP connector,

refer to the following article in our Technical Blog: http://www.convertigo.com/en/how-to/

technical-blog/entry/using-oauth-with-convertigo-http-connector.html

OBJECT PROPERTIES

The table below describes the object properties:
2 - 51

Chapter "Convertigo Objects"
Common
Property Type Category Description

Cache key boolean expert Defines whether the variable should be part of
the cache key.
If set to true, the variable and its value are
added to the cache key which is used to
determine whether the transaction's response (or
sequence's response) should be pulled from the
cache or not.
A transaction's cached response (or sequence's
cached response) is pulled from the cache when
all cache key values are corresponding to a
stored cache entry (may contain other data that
variables, for example the certificate group
defined by some transactions).

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Customizable boolean expert Defines whether the variable is customizable.
If set to true, the variable is used as a
customizable preference field in the widget
generated from the parent transaction (or
sequence) in Convertigo Mashup Composer or
any other portal.
Note: This property is used when applicable, i.e.
when the widget is declared in a portal including
customizable preference fields feature.

Default value Object standard Defines the variable's default value(s).
This property allows defining a default value or
default list of values to use when no variable
value is provided to the parent transaction (or
sequence).
A variable is always created with a default value
set to null, which means that the variable is
only declared and has no default value.
At run time, Convertigo looks for the variable
among the query parameters, the JavaScript
scope or the objects in the context to retrieve its
value. If the variable is found, its value is used, if
not found, the default value specified by this
property is used.
In this last case, and if the default value of the
variable is not set (Default value property set to
null), an exception can be thrown by any object
or JavaScript code trying to use the undefined
variable.
It is up to the Convertigo developer to unset the
variable's null value, i.e. to set a default value
to the variable. He should prefer using a Test
Case to test specific values for the variable or
pass a variable value directly when invoking the
transaction (or sequence).
Note: To unset the null value of the property,
click on the cross-shaped button in the field.
Then, the default value is an empty string. You
can use it as is or add a value.

Description String standard Describes the variable.
This property is used to describe the variable in
the widget generated from its parent transaction
(or sequence) in Convertigo Mashup Composer.
2 - 52 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
HTTP method String standard Defines the HTTP method to use for this variable.
This property allows choosing which HTTP
method has to be used to send the variable in the
HTTP request. The following values are
available:
• GET: the transaction is executed as an HTTP

GET request and the variable is added to the
query string as follows:
?<initial_query_string>&<variable
_name>=<variable_value>.

• POST: the variable is added to the data sent
in the HTTP request as a standard POST
FORM.

GET and POST method variables can be mixed in
a same transaction. If at least one POST variable
is used, the transaction's HTTP verb is
overridden to POST by Convertigo.

HTTP name String standard Defines the HTTP parameter name.
This property allows defining the name of the
HTTP variable sent in the request by Convertigo
executing the parent transaction.
If the HTTP-based transaction emulates a form
submission, this property can match the name
attribute of an HTML input field. If the HTTP-
based transaction emulates a resource access
by URL, this property can match one of the
variables names from the query string (between
"&" and "=" characters).

Is a file upload boolean expert Defines whether the variable is an uploaded file.
When set to true, this property indicates that the
transaction/sequence should receive an
uploaded file in this variable.
When received, the uploaded file is stored in a
temporary folder and deleted at the end of the
transaction/sequence. In the transaction/
sequence execution context, the variable
contains the path of the temporary file.
Note: This property value is used only by the Test
Platform to allow the developer testing the
transaction/sequence. When receiving a multi-
part request, Convertigo can set any variable as
an uploaded file.

Schema type QName XmlQName expert Assigned schema type qualified name

Property Type Category Description
2 - 53

Chapter "Convertigo Objects"
Common
EXAMPLES

HTTP and HTML transactions may use variables useful for their execution process. To explain

the best use of these variables and their overrides, the following examples are based on

Convertigo Web Integrator connectors declared in several projects.

Example 1

Let’s consider the searchGoogle transaction set in the context of the "Starting With

Convertigo Web Integrator" tutorial. This transaction searches for an input keyword in Google

search engine and accumulates the results into an XML structure thanks to a Table extraction

rule.

To do the previously described behavior, this transaction defines one single-valued variable

called keyword. Being an HTML transaction, the variable it uses is an HTTP single-valued

variable. It is created with the following parameters:

HTTP single-valued variable [

Visibility int standard Defines the variable's visibility.
This property allows defining whether the
variable's value is masked or not in:
• log files: selecting this option will mask

the variable's value that may be printed in all
loggers,

• studio user interface: selecting this
option will mask the variable's value in the
Properties view from the Studio, as well as
in the tree of the Projects view,

• platform user interface: selecting this
option will mask the variable's value in the
test platform of the project and when editing
the project in Convertigo web administration,

• project's XML files: selecting this
option will mask the variable's value in the
project's XML files generated on the file
system when saving the objects from the
project.

Any combination of these options can be chosen,
it allows to customize precisely the variable's
value display. A last option is available: Mask
value in all. Selecting this option will mask
the variable's value in all previously described
cases.

WSDL exposed boolean expert Defines whether the variable is exposed in web
service.
If set to true, variable definition is inserted in the
project's WSDL as a method parameter.
Note: This property value is ignored if the Public
method property of the parent transaction (or
sequence) is set to false, which means the
method itself is not exposed in the web service.

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Web Integrator" tutorial or the procedure “Opening a sample project from
the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Web integration in the New Project wizard.

Property Type Category Description
2 - 54 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
description=Keyword to be searched

default value=""

HTTP method=GET

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 49: HTTP single-valued variable - Configuration example

As no HTTP name is defined for this variable, the HTTP method property value (set to GET by

default) is ignored at transaction execution, i.e. the variable is not added to the HTTP request

to the target website when the transaction starts.

The HTTP single-valued variable object, named keyword, is created in the Variables folder

of the transaction, and appears as follows in the Projects view:
2 - 55

Chapter "Convertigo Objects"
Common
 Figure 2 - 50: HTTP single-valued variable - HTTP Variable and parent transaction in Projects view

The variable’s default value is displayed in the Projects tree, after the "=" character next to the

object. Here the value is an empty string, not null. Some test cases are implemented to

define test values for this variable. For more information about Test cases, see "Test case"

documentation and examples.

At runtime, HTTP variable (with its received value) is inserted into the JavaScript scope of the

transaction. If executing the transaction directly in the Studio, the research is executed with the

variable default value, which is an empty string, and fails in timeout.

Now switch to a web browser displaying the test platform of this project. The test platform

shows the searchGoogle transaction, with its keyword variable (empty string default value)

and its test cases:
2 - 56 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 51: HTTP single-valued variable - HTTP Variable and parent transaction in test platform

Variable value can be modified on the test platform to test the transaction execution. We can

set the keyword variable value to "convertigo sequencer" for example:

 Figure 2 - 52: HTTP single-valued variable - Updating variable value in test platformfor testing
2 - 57

Chapter "Convertigo Objects"
Common
Test the transaction with updated variable by clicking on the Execute button. The transaction

is executed with the variable "convertigo sequencer" value sent through the test platform,

and the result is displayed in the Execution result panel:

 Figure 2 - 53: HTTP single-valued variable - Transaction execution result in test platform

In the Studio, the resulting XML is displayed in the XML tab of the Output part of the connector

editor:
2 - 58 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 54: HTTP single-valued variable - Transaction execution result in connector editor

The results retrieved from Google results page are those corresponding to the research

performed on the dynamically passed keyword.

WHAT HAPPENED?

The keyword variable was sent to the transaction as a request parameter, thus its default

empty string value was overridden with the received value.

Example 2

The second example is based on an HTML connector, reaching Google website, defined in a

project named sample_refManual_variables.

Let's consider an HTML transaction, named searchGoogleHTTP, similar to previous

searchGoogle transaction, but, instead of using statements to input the keyword in the

search field and click on the button, this transaction uses its Subpath property and its variable

to directly make the research on the given keyword through an HTTP request.

The Google request URL to perform a research is:

http://www.google.com/search?q=<keyword>

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Variables examples in the New
Project wizard.
2 - 59

Chapter "Convertigo Objects"
Common
where q is the keyword HTTP parameter.

The transaction implements this HTTP request thanks to its properties and directly executes

the research when launched. It declares an HTTP single-valued variable, named keyword,

created with the followings parameters:

HTTP single-valued variable [

description=Keyword to be searched

default value="convertigo"

HTTP method=GET

HTTP name=q

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 55: HTTP single-valued variable - Configuration example

As an HTTP name is defined for this variable, the HTTP method property value (set to GET)

defines that the variable value will be sent as a request parameter in the query string, with the

name "q" defined by the HTTP name property.

The HTTP single-valued variable object, named keyword, is created in the Variables folder

of the transaction, and appears as follows in the Projects view:
2 - 60 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 56: HTTP single-valued variable - Variable object in Projects view

The variable’s default value is displayed in the Projects tree, after the "=" character next to the

object.

The transaction is implemented and can be tested in the Studio. To do so, the first step is to

open the connector editor by double-clicking on the HTML connector in the Projects view (if

not already open). The internal browser connects to http://www.google.com/ as seen in

Design tab of the editor:
2 - 61

Chapter "Convertigo Objects"
Common
 Figure 2 - 57: HTTP single-valued variable - Connector editor

Now execute the searchGoogleHTTP transaction by pressing F5 key on the transaction

object in the Projects view. The internal browser connects to http://www.google.com/

search?q=convertigo as seen in Design tab of the editor:
2 - 62 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 58: HTTP single-valued variable - Connector editor after transaction execution

WHAT HAPPENED?

The connector has built the request URL by concatenating the server address, the transaction

subpath and a query string. This query string was formed with the variable details.

Each variable which HTTP method property set to GET is added to the query string as a

parameter:

 which name is set by the variable's HTTP name property,

 which value is the variable's value.

In this case, the parameter name is q and its value is the transaction's keyword default value

"convertigo".

Notes:

 If the HTTP name property is empty, the parameter is not added, thus not sent.

 If the HTTP method property is set to POST, the parameter is added to the body of request

(POST data) rather than to the query string.
2 - 63

Chapter "Convertigo Objects"
Common
HTTP MULTI-VALUED VARIABLE (REQUESTABLE VARIABLES)

OBJECT DESCRIPTION

Defines a multi-valued variable for an HTTP-based transaction.

An HTTP multi-valued variable declares a variable which accepts one or more values to an

HTTP-based transaction.

This variable is dedicated to HTTP-based transactions only:

 HTTP transaction,

 XML HTTP transaction,

 JSON HTTP transaction,

 HTML transaction.

This variable object allows defining HTTP request parameters through the HTTP name and

HTTP method properties.

It can define a default list of value(s), specified in the Default value property, that are used as

HTTP parameters values if no value is found for this variable.

At runtime, the HTTP parameters values are calculated by Convertigo through the following

steps:

 the values are received in the request to the transaction,

 if no value is received for this variable, the JavaScript value of the variable is chosen, if a

variable of the same name exists in the JavaScript scope of current context (this

JavaScript variable should be an array of values),

 if no JavaScript value is defined, the context value of the variable is chosen, if a variable of

the same name is stored in current context,

 if none of the previous methods gives values, the default list of values is used,

 if no default value is specified, the variable is not defined and an Exception can be thrown

when trying to access its values in the core of the transaction.

Notes:

 In Convertigo Studio, when an HTTP multi-valued variable is created in a transaction/

sequence, it can be easily replaced by an HTTP single-valued variable, using the right-

click menu on the variable and choosing the option Change to > SingleValued variable.

 HTTP connector supports OAuth authentication. To enable OAuth, you simply need to

provide four variables to any kind of HTTP transaction: __header_oAuthKey,

__header_oAuthSecret, __header_oAuthToken and

__header_oAuthTokenSecret. For more information about OAuth in HTTP connector,

refer to the following article in our Technical Blog: http://www.convertigo.com/en/how-to/

technical-blog/entry/using-oauth-with-convertigo-http-connector.html

OBJECT PROPERTIES

The table below describes the object properties:
2 - 64 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
Property Type Category Description

Cache key boolean expert Defines whether the variable should be part of
the cache key.
If set to true, the variable and its value are
added to the cache key which is used to
determine whether the transaction's response (or
sequence's response) should be pulled from the
cache or not.
A transaction's cached response (or sequence's
cached response) is pulled from the cache when
all cache key values are corresponding to a
stored cache entry (may contain other data that
variables, for example the certificate group
defined by some transactions).

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Customizable boolean expert Defines whether the variable is customizable.
If set to true, the variable is used as a
customizable preference field in the widget
generated from the parent transaction (or
sequence) in Convertigo Mashup Composer or
any other portal.
Note: This property is used when applicable, i.e.
when the widget is declared in a portal including
customizable preference fields feature.

Default value Object standard Defines the variable's default value(s).
This property allows defining a default value or
default list of values to use when no variable
value is provided to the parent transaction (or
sequence).
A variable is always created with a default value
set to null, which means that the variable is
only declared and has no default value.
At run time, Convertigo looks for the variable
among the query parameters, the JavaScript
scope or the objects in the context to retrieve its
value. If the variable is found, its value is used, if
not found, the default value specified by this
property is used.
In this last case, and if the default value of the
variable is not set (Default value property set to
null), an exception can be thrown by any object
or JavaScript code trying to use the undefined
variable.
It is up to the Convertigo developer to unset the
variable's null value, i.e. to set a default value
to the variable. He should prefer using a Test
Case to test specific values for the variable or
pass a variable value directly when invoking the
transaction (or sequence).
Note: To unset the null value of the property,
click on the cross-shaped button in the field.
Then, the default value is an empty string. You
can use it as is or add a value.

Description String standard Describes the variable.
This property is used to describe the variable in
the widget generated from its parent transaction
(or sequence) in Convertigo Mashup Composer.
2 - 65

Chapter "Convertigo Objects"
Common
HTTP method String standard Defines the HTTP method to use for this variable.
This property allows choosing which HTTP
method has to be used to send the variable in the
HTTP request. The following values are
available:
• GET: the transaction is executed as an HTTP

GET request and the variable is added to the
query string as follows:
?<initial_query_string>&<variable
_name>=<variable_value>.

• POST: the variable is added to the data sent
in the HTTP request as a standard POST
FORM.

GET and POST method variables can be mixed in
a same transaction. If at least one POST variable
is used, the transaction's HTTP verb is
overridden to POST by Convertigo.

HTTP name String standard Defines the HTTP parameter name.
This property allows defining the name of the
HTTP variable sent in the request by Convertigo
executing the parent transaction.
If the HTTP-based transaction emulates a form
submission, this property can match the name
attribute of an HTML input field. If the HTTP-
based transaction emulates a resource access
by URL, this property can match one of the
variables names from the query string (between
"&" and "=" characters).

Is a file upload boolean expert Defines whether the variable is an uploaded file.
When set to true, this property indicates that the
transaction/sequence should receive an
uploaded file in this variable.
When received, the uploaded file is stored in a
temporary folder and deleted at the end of the
transaction/sequence. In the transaction/
sequence execution context, the variable
contains the path of the temporary file.
Note: This property value is used only by the Test
Platform to allow the developer testing the
transaction/sequence. When receiving a multi-
part request, Convertigo can set any variable as
an uploaded file.

Schema type QName XmlQName expert Assigned schema type qualified name

Soap array boolean standard Defines if the multi-valued variable should be
seen as a Soap Array of a occurrence of
variables.
In the case of transaction or sequence defined as
a public SOAP method, this property allows to
specify of the current multi-valued variable has to
be seen in SOAP envelope as a Soap Array with
multiple values inside it or as an occurrence of
identical variables.

Property Type Category Description
2 - 66 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
EXAMPLES

HTTP and HTML transactions may use variables useful for their execution process. To explain

the best use of these variables and their overrides, the following examples are based on a

Convertigo Web Integrator connector declared in a project named

sample_refManual_variables.

Example 1

Let’s consider a multiSearchGoogle transaction, similar to searchGoogle transaction set

in the context of the "Starting With Convertigo Web Integrator" Quick Guide, but declaring a

multi-valued variable instead of the single-valued variable of the Quick guide’s transaction.

This transaction searches in Google search engine for a keyword built from several input

keywords and accumulates the results into an XML structure thanks to a Table extraction rule.

It is created in an HTML connector of the sample_refManual_variables project.

As said in introduction, this transaction defines one multi-valued variable called keywords.

Being an HTML transaction, the variable it uses is an HTTP multi-valued variable. It is created

Visibility int standard Defines the variable's visibility.
This property allows defining whether the
variable's value is masked or not in:
• log files: selecting this option will mask

the variable's value that may be printed in all
loggers,

• studio user interface: selecting this
option will mask the variable's value in the
Properties view from the Studio, as well as
in the tree of the Projects view,

• platform user interface: selecting this
option will mask the variable's value in the
test platform of the project and when editing
the project in Convertigo web administration,

• project's XML files: selecting this
option will mask the variable's value in the
project's XML files generated on the file
system when saving the objects from the
project.

Any combination of these options can be chosen,
it allows to customize precisely the variable's
value display. A last option is available: Mask
value in all. Selecting this option will mask
the variable's value in all previously described
cases.

WSDL exposed boolean expert Defines whether the variable is exposed in web
service.
If set to true, variable definition is inserted in the
project's WSDL as a method parameter.
Note: This property value is ignored if the Public
method property of the parent transaction (or
sequence) is set to false, which means the
method itself is not exposed in the web service.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Variables examples in the New
Project wizard.

Property Type Category Description
2 - 67

Chapter "Convertigo Objects"
Common
with the following parameters:

HTTP multi-valued variable [

description=Keywords to be searched

default value=["convertigo", "cliplet"]

HTTP method=GET

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 59: HTTP multi-valued variable - Configuration example

As no HTTP name is defined for this variable, the HTTP method property value (set to GET by

default) is ignored at transaction execution, i.e. the variables are not added to the HTTP

request to the target website when the transaction starts.

The Default value property of this HTTP multi-valued variable is set to fixed values (not null).

This property is edited in the Array editor:
2 - 68 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 60: HTTP multi-valued variable - Default value property in Array editor

The HTTP multi-valued variable object, named keywords, is created in the Variables folder

of the transaction, and appears as follows in the Projects view:

 Figure 2 - 61: HTTP multi-valued variable - HTTP Variable and parent transaction in Projects view

The variable’s default values are displayed in the Projects tree, after the "=" character next to

the object.

At runtime, HTTP variables (with its default values) are inserted into the JavaScript scope of

the transaction. Thus, while executing the transaction in the Studio, the research is executed

with the variable default values "convertigo" and "cliplet".

In the Studio, the resulting XML is displayed in the XML tab of the Output part of the connector
2 - 69

Chapter "Convertigo Objects"
Common
editor:

 Figure 2 - 62: HTTP multi-valued variable - Transaction execution result in connector editor

The results retrieved from Google results page are those corresponding to the research

performed on the variable default value as keyword.

Now switch to a web browser displaying the test platform of this project. The test platform

shows the multiSearchGoogle transaction, with its keywords multi-valued variable and its

"convertigo" and "cliplet" default values:
2 - 70 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 63: HTTP multi-valued variable - HTTP Variable and parent transaction in test platform

Variable values can be modified on the test platform to test the transaction execution. We can

update the keywords variable values to "convertigo", "mobility" and add a third value

"sequencer" for example:

 Figure 2 - 64: HTTP multi-valued variable - Updating variable values in test platformfor testing
2 - 71

Chapter "Convertigo Objects"
Common
Test the transaction with updated variable by clicking on the Execute button. The transaction

is executed with the variable "convertigo", "mobility" and "sequencer" values sent

through the test platform, and the result is displayed in the Execution result panel:

 Figure 2 - 65: HTTP multi-valued variable - Transaction execution result in test platform

The results retrieved from Google results page are those corresponding to the research

performed on the dynamically passed keywords.

WHAT HAPPENED?

The keywords variable were sent to the transaction as request parameters, thus its default

values were overridden with the received values.

Example 2

Let's consider a transaction, named multiSearchGoogleHTTP, similar to previous

multiSearchGoogle transaction, but, instead of using statements to input the keywords in

the search field and click on the button, this transaction uses its Subpath property and its

variables to directly make the research on the given keywords through an HTTP request.

The Google request URL to perform a research is:

http://www.google.com/search?q=<keyword>
2 - 72 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
where q is the keyword HTTP parameter.

This HTML transaction implements this HTTP request and directly executes the research

when launched. It is created in an HTML connector of the sample_refManual_variables

project.

This transaction declares an HTTP multi-valued variable, named keywords, created with the

followings parameters:

HTTP single-valued variable [

description=Keywords to be searched

default value=["convertigo", "cliplet"]

HTTP method=GET

HTTP name=q

cache key=true

customizable=false

schema type=xsd:string

WSDL exposed=true

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 66: HTTP multi-valued variable - Configuration example

As an HTTP name is defined for this variable, the HTTP method property value (set to GET)

defines that the variable values will be sent as request parameters in the query string, with the

name "q" defined by the HTTP name property.
2 - 73

Chapter "Convertigo Objects"
Common
The Default value property of this HTTP multi-valued variable is set to fixed values (not null).

This property is edited in the Array editor:

 Figure 2 - 67: HTTP multi-valued variable - Default value property in Array editor

The HTTP multi-valued variable object, named keywords, is created in the Variables folder

of the transaction, and appears as follows in the Projects view:

 Figure 2 - 68: HTTP multi-valued variable - HTTP Variable and parent transaction in Projects view

The variable’s default values are displayed in the Projects tree, after the "=" character next to

the object.

The transaction is implemented and can be tested in the Studio. To do so, the first step is to

open the connector editor by double-clicking on the HTML connector in the Projects view (if

not already open). The internal browser connects to http://www.google.com/ as seen in

Design tab of the editor:
2 - 74 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 69: HTTP multi-valued variable - Connector editor

Now execute the multiSearchGoogleHTTP transaction by pressing F5 key on the

transaction object in the Projects view. The internal browser connects to http://

www.google.com/search?q=convertigo&q=cliplet as seen in Design tab of the

editor:
2 - 75

Chapter "Convertigo Objects"
Common
 Figure 2 - 70: HTTP multi-valued variable - Connector editor

WHAT HAPPENED?

The connector has built the request URL by concatenating the server address, the transaction

subpath and a query string. This query string was formed with the variable details.

Each value of the variable which HTTP method property set to GET is added to the query string

as a parameter:

 which name is set by the variable's HTTP name property,

 which value is the variable's value.

In this case, the parameter name is q and its values are the transaction's keywords default

values "convertigo" and "cliplet".

Notes:

 If the HTTP name property is empty, the parameters are not added, thus not sent.

 If the HTTP method property is set to POST, the parameters are added to the body of

request (POST data) rather than to the query string.
2 - 76 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
STATEMENT VARIABLES
2 - 77

Chapter "Convertigo Objects"
Common
HTTP SINGLE-VALUED VARIABLE (STATEMENT VARIABLES)

OBJECT DESCRIPTION

Defines a single-valued variable for an HTTP-based statement.

An HTTP single-valued variable declares a variable which accepts a unique value to an HTTP-

based statement.

This variable is dedicated to HTTP-based statements only:

 HTTP request statement.

This variable object allows defining an HTTP request parameter through the HTTP name and

HTTP method properties.

It can define a default value, specified in the Default value property, that is used as HTTP

parameter value if no value is found for this variable.

At runtime, the HTTP parameter value is calculated by Convertigo through the following steps:

 if a variable of the same name exists in the JavaScript scope of current context, the

JavaScript value of the variable is chosen,

 if no JavaScript variable is defined, the context value of the variable is chosen, if a variable

of the same name is stored in current context,

 if none of the previous methods gives a value, the default value defined in Default value

property is used,

 if no default value is specified, the variable is not sent in the HTTP request.

Note: In Convertigo Studio, when an HTTP single-valued variable is created in an HTTP

request statement, it can be easily replaced by an HTTP multi-valued variable, using the right-

click menu on the variable and choosing the option Change to > MultiValued variable.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 78 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
Default value Object standard Defines the variable's default value(s).
This property allows defining a default value or
default list of values to use when no variable
value is provided to the parent transaction (or
sequence).
A variable is always created with a default value
set to null, which means that the variable is
only declared and has no default value.
At run time, Convertigo looks for the variable
among the query parameters, the JavaScript
scope or the objects in the context to retrieve its
value. If the variable is found, its value is used, if
not found, the default value specified by this
property is used.
In this last case, and if the default value of the
variable is not set (Default value property set to
null), an exception can be thrown by any object
or JavaScript code trying to use the undefined
variable.
It is up to the Convertigo developer to unset the
variable's null value, i.e. to set a default value
to the variable. He should prefer using a Test
Case to test specific values for the variable or
pass a variable value directly when invoking the
transaction (or sequence).
Note: To unset the null value of the property,
click on the cross-shaped button in the field.
Then, the default value is an empty string. You
can use it as is or add a value.

Description String standard Describes the variable.
This property is used to describe the variable in
the widget generated from its parent transaction
(or sequence) in Convertigo Mashup Composer.

HTTP method String standard Defines the HTTP method to use for this variable.
This property allows choosing which HTTP
method has to be used to send the variable in the
HTTP request. The following values are
available:
• GET: the variable is added to the query string

as follows:
?<initial_query_string>&<variable
_name>=<variable_value>.

• POST: the variable is added to the post data
sent in the HTTP request as a standard POST
FORM.

GET and POST method variables can be mixed in
a same statement. If at least one POST variable is
used, the statement's HTTP verb is overridden to
POST by Convertigo.

HTTP name String standard Defines the HTTP parameter name.
This property allows defining the name of the
HTTP parameter sent in the request by
Convertigo executing the statement. The HTTP
parameter named by this property is added to the
query string or to post data, depending on the
HTTP method property value.
If the HTTP-based statement emulates a form
submission, this property can match the name
attribute of an HTML input field. If the HTTP-
based statement emulates a resource access by
URL, this property can match one of the variables
names from the query string (between "&" and "="
characters).

Property Type Category Description
2 - 79

Chapter "Convertigo Objects"
Common
EXAMPLES

This example is based on a connector, reaching Google website, defined in a project named

sample_refManual_variables.

Let's consider an HTML transaction, named searchYahoo, similar to searchGoogle

transaction developed in the context of the "Starting with Convertigo Web Integrator" tutorial,

but performing the research on Yahoo website instead of Google.

It declares an HTTP single-value variable, named keyword, with a Default value property set

to "Convertigo". For more information about HTML transaction or HTTP single-valued

variable object, see "HTML transaction" and "HTTP single-valued variable" documentation and

example.

The searchYahoo transaction appears as follows in the Projects view of the Convertigo

Studio:

Visibility int standard Defines the variable's visibility.
This property allows defining whether the
variable's value is masked or not in:
• log files: selecting this option will mask

the variable's value that may be printed in all
loggers,

• studio user interface: selecting this
option will mask the variable's value in the
Properties view from the Studio, as well as
in the tree of the Projects view,

• platform user interface: selecting this
option will mask the variable's value in the
test platform of the project and when editing
the project in Convertigo web administration,

• project's XML files: selecting this
option will mask the variable's value in the
project's XML files generated on the file
system when saving the objects from the
project.

Any combination of these options can be chosen,
it allows to customize precisely the variable's
value display. A last option is available: Mask
value in all. Selecting this option will mask
the variable's value in all previously described
cases.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Variables examples in the New
Project wizard.

Property Type Category Description
2 - 80 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 71: HTTP single-valued variable - HTML transaction with HTTP variable in Projects view

The searchYahoo transaction is created with its Subpath property left empty, so it starts

executing its statements after the connector has established the connection to target website.

Being in a connector reaching Google website, the transaction has to redirect to Yahoo website

when Google search page is loaded. Then, it makes the research on the given keyword.

The Yahoo request URL for a research is:

http://fr.search.yahoo.com/search?p=<keyword>

where p is the keyword HTTP parameter.

To perform the redirection, an HTTP request statement is implemented on the Entry handler

matching Google search page. The HTTP request statement may declare variables, in order

to send them as request parameters. For more information about the configuration of the HTTP

request statement, see "HTTP request" statement documentation and examples.

This statement declares an HTTP single-valued variable, named keyword, created with the

followings parameters:

HTTP single-valued variable [

Description=Keyword to send to Yahoo

Default value="Orsay"

HTTP method=GET

HTTP name=p

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 81

Chapter "Convertigo Objects"
Common
 Figure 2 - 72: HTTP single-valued variable - Configuration example with default value

At runtime, the variable value is retrieved from the JavaScript scope, if a variable of the same

name exists in scope of current context. In this case, the transaction variable has the same

name as the statement variable. As transaction variables are inserted in scope at the begining

of the transaction execution, the statement variable will find its value in scope.

The HTTP request statement is created in the Statements folder of the handler and appears,

with its variable, as follows in the Projects view:
2 - 82 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 73: HTTP single-valued variable - HTTP request statement with HTTP variable in Projects view

The variable’s default value is displayed in the Projects tree, after the "=" character next to the

object.

The transaction is implemented and can be tested in the Studio. To do so, the first step is to

open the connector editor by double-clicking on the HTML connector in the Projects view (if

not already open). The internal browser connects to http://www.google.com/ as seen in

Design tab of the editor:
2 - 83

Chapter "Convertigo Objects"
Common
 Figure 2 - 74: HTTP single-valued variable - Connector editor

Now execute the searchYahoo transaction by pressing F5 key on the transaction object in

the Projects view. The internal browser connects to http://fr.search.yahoo.com/

search?p=Convertigo as seen in Design tab of the editor:
2 - 84 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 75: HTTP single-valued variable - Connector editor after transaction execution

WHAT HAPPENED?

At the start of the transaction, its keyword variable was added to the JavaScript scope.

The connector built the request URL by concatenating the server address, the transaction

Subpath (empty) and an empty query string because the keyword variable hasn't specified

any parameter name through its HTTP name property. Thus, it simply requested http://

www.google.com/.

The Google search page screen class was detected thanks to its criteria and the

corresponding entry handler was executed.

The HTTP request statement built the request URL by concatenating its Host value, URI value

and a query string. This query string was formed from statement's variables details.

Each variable which HTTP method property is set to GET is added to the query string as a

parameter:

 which name is set by the variable's HTTP name property,

 which value is the variable's value.

In this case, the parameter name is p and its value is the transaction's keyword default value

"Convertigo". This value has overriden the statement's variable default value. If the

transaction didn’t declare any variable, the statement wouldn’t have found a variable value in

the JavaScript scope and it would have used its variable default value "Orsay".

Notes:

 If the HTTP name property is empty, the parameter is not added, thus not sent.
2 - 85

Chapter "Convertigo Objects"
Common
 If the HTTP method property is set to POST, the parameter is added to the body of request

(POST data) rather than to the query string.
2 - 86 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
HTTP MULTI-VALUED VARIABLE (STATEMENT VARIABLES)

OBJECT DESCRIPTION

Defines a multi-valued variable for an HTTP-based statement.

An HTTP multi-valued variable declares a variable which accepts one or more values to an

HTTP-based statement.

This variable is dedicated to HTTP-based statements only:

 HTTP request statement.

This variable object allows defining a list of HTTP request parameters through the HTTP name

and HTTP method properties.

It can define a default list of value(s), specified in the Default value property, that are used as

HTTP parameters values if no value is found for this variable.

At runtime, the HTTP parameters values are calculated by Convertigo through the following

steps:

 if a variable of the same name exists in the JavaScript scope of current context, the

JavaScript value of the variable is chosen (this JavaScript variable should be an array of

values),

 if no JavaScript variable is defined, the context value of the variable is chosen, if a variable

of the same name is stored in current context,

 if none of the previous methods gives a value, the default values defined in Default value

property are used,

 if no default value is specified, the variable is not sent in the HTTP request.

Note: In Convertigo Studio, when an HTTP multi-valued variable is created in an HTTP request

statement, it can be easily replaced by an HTTP single-valued variable, using the right-click

menu on the variable and choosing the option Change to > SingleValued variable.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 87

Chapter "Convertigo Objects"
Common
Default value Object standard Defines the variable's default value(s).
This property allows defining a default value or
default list of values to use when no variable
value is provided to the parent transaction (or
sequence).
A variable is always created with a default value
set to null, which means that the variable is
only declared and has no default value.
At run time, Convertigo looks for the variable
among the query parameters, the JavaScript
scope or the objects in the context to retrieve its
value. If the variable is found, its value is used, if
not found, the default value specified by this
property is used.
In this last case, and if the default value of the
variable is not set (Default value property set to
null), an exception can be thrown by any object
or JavaScript code trying to use the undefined
variable.
It is up to the Convertigo developer to unset the
variable's null value, i.e. to set a default value
to the variable. He should prefer using a Test
Case to test specific values for the variable or
pass a variable value directly when invoking the
transaction (or sequence).
Note: To unset the null value of the property,
click on the cross-shaped button in the field.
Then, the default value is an empty string. You
can use it as is or add a value.

Description String standard Describes the variable.
This property is used to describe the variable in
the widget generated from its parent transaction
(or sequence) in Convertigo Mashup Composer.

HTTP method String standard Defines the HTTP method to use for this variable.
This property allows choosing which HTTP
method has to be used to send the variable in the
HTTP request. The following values are
available:
• GET: the variable is added to the query string

as follows:
?<initial_query_string>&<variable
_name>=<variable_value>.

• POST: the variable is added to the post data
sent in the HTTP request as a standard POST
FORM.

GET and POST method variables can be mixed in
a same statement. If at least one POST variable is
used, the statement's HTTP verb is overridden to
POST by Convertigo.

HTTP name String standard Defines the HTTP parameter name.
This property allows defining the name of the
HTTP parameter sent in the request by
Convertigo executing the statement. The HTTP
parameter named by this property is added to the
query string or to post data, depending on the
HTTP method property value.
If the HTTP-based statement emulates a form
submission, this property can match the name
attribute of an HTML input field. If the HTTP-
based statement emulates a resource access by
URL, this property can match one of the variables
names from the query string (between "&" and "="
characters).

Property Type Category Description
2 - 88 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
Soap array boolean standard Defines if the multi-valued variable should be
seen as a Soap Array of a occurrence of
variables.
In the case of transaction or sequence defined as
a public SOAP method, this property allows to
specify of the current multi-valued variable has to
be seen in SOAP envelope as a Soap Array with
multiple values inside it or as an occurrence of
identical variables.

Visibility int standard Defines the variable's visibility.
This property allows defining whether the
variable's value is masked or not in:
• log files: selecting this option will mask

the variable's value that may be printed in all
loggers,

• studio user interface: selecting this
option will mask the variable's value in the
Properties view from the Studio, as well as
in the tree of the Projects view,

• platform user interface: selecting this
option will mask the variable's value in the
test platform of the project and when editing
the project in Convertigo web administration,

• project's XML files: selecting this
option will mask the variable's value in the
project's XML files generated on the file
system when saving the objects from the
project.

Any combination of these options can be chosen,
it allows to customize precisely the variable's
value display. A last option is available: Mask
value in all. Selecting this option will mask
the variable's value in all previously described
cases.

Property Type Category Description
2 - 89

Chapter "Convertigo Objects"
Common
STEP VARIABLES
2 - 90 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
CALL SINGLE-VALUED VARIABLE

OBJECT DESCRIPTION

Defines a single-valued variable for a step.

A Call single-valued variable is used to send a single-valued input variable to a transaction/

sequence targeted by a Call Transaction/Call Sequence step.

It can define a default value, specified in the Default value property, that is used as parameter

value if no value is found for this variable.

At runtime, the variable value is calculated by Convertigo through the following steps:

 if the Source property is set, the variable value is the source result (see Source property

documentation),

 if no source is set, the JavaScript value of the variable is chosen, if a variable of the same

name exists in the JavaScript scope of current context,

 if no JavaScript variable is defined, the context value of the variable is chosen, if a variable

of the same name is stored in current context,

 if none of the previous methods gives a value, the default value set in the Default value

property is used,

 if no default value is specified, the variable is not sent to the target transaction/sequence.

Note: In Convertigo Studio, when a Call single-valued variable is created in a Call Transaction/

Call Sequence step, it can be easily replaced by a Call multi-valued variable, using the right-

click menu on the variable and choosing the option Change to > MultiValued variable.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 91

Chapter "Convertigo Objects"
Common
Default value Object standard Defines the variable's default value(s).
This property allows defining a default value or
default list of values to use when no variable
value is provided to the parent transaction (or
sequence).
A variable is always created with a default value
set to null, which means that the variable is
only declared and has no default value.
At run time, Convertigo looks for the variable
among the query parameters, the JavaScript
scope or the objects in the context to retrieve its
value. If the variable is found, its value is used, if
not found, the default value specified by this
property is used.
In this last case, and if the default value of the
variable is not set (Default value property set to
null), an exception can be thrown by any object
or JavaScript code trying to use the undefined
variable.
It is up to the Convertigo developer to unset the
variable's null value, i.e. to set a default value
to the variable. He should prefer using a Test
Case to test specific values for the variable or
pass a variable value directly when invoking the
transaction (or sequence).
Note: To unset the null value of the property,
click on the cross-shaped button in the field.
Then, the default value is an empty string. You
can use it as is or add a value.

Description String standard Describes the variable.
This property is used to describe the variable in
the widget generated from its parent transaction
(or sequence) in Convertigo Mashup Composer.

Source XMLVector expert Defines the source to use as variable value.
This property allows defining the variable value
as a source from a previous step.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and the
variable takes for value the XML node value
resulting from this execution (the variable value
will be its text content).
If the XPath doesn't match or if the source is left
blank, the variable value is calculated as
explained in the main description of this object.

Property Type Category Description
2 - 92 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
EXAMPLES

The Call Transaction and Call Sequence steps enable to request any transaction or sequence

execution inside a given sequence. Those steps may provide input variables to the target

transaction or sequence, matching variables defined for the target transaction or sequence.

For more information about Call Transaction or Call Sequence steps, see "Call Transaction"

and "Call Sequence" steps documentation and examples.

The first example shows Call Transaction steps variables.

Example 1

Let’s consider the sequences developed in the sample_documentation_CMS project in the

context of the "Starting with Convertigo Mashup Sequencer" tutorial. These sequences contain

Call Transaction steps declaring Call single-valued variables.

The GetXMLData sequence includes two Call Transaction steps:

 Call_Transaction_GetArticleData step, launching GetArticleData Javelin

transaction from sample_documentation_CLI project,

 Call_Transaction_SearchGoogle step, launching SearchGoogleWithLimit

Visibility int standard Defines the variable's visibility.
This property allows defining whether the
variable's value is masked or not in:
• log files: selecting this option will mask

the variable's value that may be printed in all
loggers,

• studio user interface: selecting this
option will mask the variable's value in the
Properties view from the Studio, as well as
in the tree of the Projects view,

• platform user interface: selecting this
option will mask the variable's value in the
test platform of the project and when editing
the project in Convertigo web administration,

• project's XML files: selecting this
option will mask the variable's value in the
project's XML files generated on the file
system when saving the objects from the
project.

Any combination of these options can be chosen,
it allows to customize precisely the variable's
value display. A last option is available: Mask
value in all. Selecting this option will mask
the variable's value in all previously described
cases.

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Mashup Sequencer" tutorial or the procedure “Opening a sample project
from the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Mashup sequencing in the New Project
wizard.
Associated projects can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Legacy integration and
Web integration in the New Project wizard.

Property Type Category Description
2 - 93

Chapter "Convertigo Objects"
Common
HTML transaction from sample_documentation_CWI project.

Each of the target transactions declares variables. The steps have to send these variables to

the call to the transaction.

To do so, they declare Call variables, imported from respective target transaction, that are

used as input parameters by called transactions:

 a Call single-valued variable, named article_no, with the following parameters:

Call single-valued variable [

Default value=""

Source=[1255530858989, .] ==> reference to the preceding

<article_num> Element step

]

 a Call single-valued variable, named keyword, with the following parameters:

Call single-valued variable [

Default value=""

Source=[1255534601721, ./name] ==> reference to the preceding

IteratorOnEachRow step

]

 a Call single-valued variable, named maxPages, with the following parameters:

Call single-valued variable [

Default value="2"

Source=[]

]

These parameters are edited in the Properties view of the Convertigo Studio (here, keyword

and maxPages variables):

 Figure 2 - 76: Call single-valued variable - Configuration example
2 - 94 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 77: Call single-valued variable - Configuration example

The Source property of two of these variables is set so that the variables are sourced from the

relevant previous steps. These properties are edited in the Step Source editor.

 The Source property of article_no variable is set from the previous <article_num>

jElement step, with the following configuration:

 Figure 2 - 78: Call single-valued variable - Source of the article_no variable
2 - 95

Chapter "Convertigo Objects"
Common
 The Source property of keyword variable is set from the previous IteratorOnEachRow

Iterator step, with the following configuration:

 Figure 2 - 79: Call single-valued variable - Source of the keyword variable

These Call single-valued variables are created in the Variables folders of the Call Transaction

steps, and appear as follows in the Projects view of the Convertigo Studio:
2 - 96 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 80: Call single-valued variable - Call Transaction steps with Call variables in Projects view

At runtime, variables are provided by the Call Transaction steps to the executed transactions.

Values obtained from sources are sent throughout the execution depending on the previous

steps current XML.

The second and third examples show Call Sequence steps variables. The following examples

are in continuity with those given for Requestable single-valued variable and Requestable

multi-valued variable. Please refer to these objects examples for more information before

proceeding.

Example 2

We refer here to the userLogin and the userLoginWithDefault sequences of the

sample_refManual_variables project.

A Generic sequence, named testLogin, is created in order to call both sequences and

retrieve their XML response. To do so, this sequence includes two Call Sequence steps:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Variables examples in the New
Project wizard.
2 - 97

Chapter "Convertigo Objects"
Common
 Call_userLogin step launches the userLogin sequence,

 Call_userLoginWithDefault step launches the userLoginWithDefault

sequence.

This sequence is created in the Sequences folder of the project and appears, with the two

steps, as follows in the Projects view:

 Figure 2 - 81: Call single-valued and multi-valued variables - Sequence and Call Sequence steps in Projects view

The Call_userLogin and the Call_userLoginWithDefault steps declare no variable,

and their Output property is set to true in order to add the returned XML response to the

testLogin sequence response.

At runtime, as no variable is provided by the Call Sequence steps to the called sequences, they

are executed with no variable provided in entry.

In the Studio, the resulting XML is displayed in the XML tab of the sequence editor:
2 - 98 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 82: Call single-valued and multi-valued variables - Sequence execution result in sequence editor

WHAT HAPPENED ?

The lastName and firstNames variables were not provided by the Call Sequence steps,

thus each target sequence used its variables default values.

The loginUser sequence returned an error message as it requires values to be provided.

The loginUserWithDefault returned a default <login> message as it handles a default

case if values are not provided.

Example 3

This example is the same as the previous one except that the Call Sequence steps declare

variables.

A Generic sequence, named testLoginWithValues, is created with two Call Sequence

steps and two Element steps:

 Call_userLogin Call Sequence step launches the userLogin sequence,

 <firstname> Element step writes an XML element in result XML with value "Node",

 <lastname> Element step writes an XML element in result XML with value "Value",

 Call_userLoginWithDefault Call Sequence step launches the

userLoginWithDefault sequence.

The Call_userLogin step declares two variables imported from the sequence and for which

default values have been modified as follows:

 a Call single-valued variable, named lastName, with the following parameters:

Call single-valued variable [

Default value="Value"

Source=[]

]

 a Call multi-valued variable, named firstNames, with the following parameters:
2 - 99

Chapter "Convertigo Objects"
Common
Call multi-valued variable [

Default value=["Fixed"]

Source=[]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 83: Call single-valued variable - Configuration example with default value

 Figure 2 - 84: Call multi-valued variable - Configuration example with default value

The Default value property of the Call multi-valued variable is edited in the Array editor:
2 - 100 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 85: Call multi-valued variable - Default value property in Array editor

The Call_userLoginWithDefault step declares two variables imported from the

sequence and for which Source property is set as follows:

 a Call single-valued variable, named lastName, with the following parameters:

Call single-valued variable [

Default value=null

Source=[1303311539328, .] ==> reference to the preceding <lastname>

step

]

 a Call multi-valued variable, named firstNames, with the following parameters:

Call multi-valued variable [

Default value=null

Source=[1303311478425, .] ==> reference to the preceding

<firstname> step

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 101

Chapter "Convertigo Objects"
Common
 Figure 2 - 86: Call single-valued variable - Configuration example with Source

 Figure 2 - 87: Call multi-valued variable - Configuration example with Source

The Source property of these two variables is set so that the variables are sourced from the

relevant previous steps. These properties are edited in the Step Source editor with the

following configuration (here, the firstNames variable Source property):
2 - 102 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 88: Call multi-valued variable - Source of the firstNames variable

The sequence is created in the Sequences folder of the project and appears, with the steps,

as follows in the Projects view:
2 - 103

Chapter "Convertigo Objects"
Common
 Figure 2 - 89: Call single-valued and multi-valued variables - Call Sequence steps with Call variables in Projects view

Both Call Sequence steps Output property is set to true in order to add the returned XML

responses to the testLogin sequence XML result.

At runtime, as variables are provided by the Call Sequence steps to the executed sequences,

they are executed with these variables values.

In the Studio, the resulting XML is displayed in the XML tab of the sequence editor:
2 - 104 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 90: Call single-valued and multi-valued variables - Sequence execution result in sequence editor

WHAT HAPPENED?

The lastName and firstNames variables were provided by the Call Sequence steps,

thus each target sequence variables was overridden by the values sent by the steps.

Both of the loginUser and loginUserWithDefault sequences returned a successful

login message.
2 - 105

Chapter "Convertigo Objects"
Common
CALL MULTI-VALUED VARIABLE

OBJECT DESCRIPTION

Defines a multi-valued variable for a step.

A Call multi-valued variable is used to send a multi-valued input variable to a transaction/

sequence targeted by a Call Transaction/Call Sequence step.

It can define a list of default values, specified in the Default value property, that is used as

parameter value if no value is found for this variable.

At runtime, the variable value is calculated by Convertigo through the following steps:

 if the Source property is set, the variable value is the source result (see Source property

documentation),

 if no source is set, the JavaScript value of the variable is chosen, if a variable of the same

name exists in the JavaScript scope of current context (this JavaScript variable should be

an array of values),

 if no JavaScript variable is defined, the context value of the variable is chosen, if a variable

of the same name is stored in current context,

 if none of the previous methods gives a value, the default list of values set in the Default

value property is used,

 if no default value is specified, the variable is not sent to the target transaction/sequence.

Note: In Convertigo Studio, when a Call multi-valued variable is created in a Call Transaction/

Call Sequence step, it can be easily replaced by a Call single-valued variable, using the right-

click menu on the variable and choosing the option Change to > SingleValued variable.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 106 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
Default value Object standard Defines the variable's default value(s).
This property allows defining a default value or
default list of values to use when no variable
value is provided to the parent transaction (or
sequence).
A variable is always created with a default value
set to null, which means that the variable is
only declared and has no default value.
At run time, Convertigo looks for the variable
among the query parameters, the JavaScript
scope or the objects in the context to retrieve its
value. If the variable is found, its value is used, if
not found, the default value specified by this
property is used.
In this last case, and if the default value of the
variable is not set (Default value property set to
null), an exception can be thrown by any object
or JavaScript code trying to use the undefined
variable.
It is up to the Convertigo developer to unset the
variable's null value, i.e. to set a default value
to the variable. He should prefer using a Test
Case to test specific values for the variable or
pass a variable value directly when invoking the
transaction (or sequence).
Note: To unset the null value of the property,
click on the cross-shaped button in the field.
Then, the default value is an empty string. You
can use it as is or add a value.

Description String standard Describes the variable.
This property is used to describe the variable in
the widget generated from its parent transaction
(or sequence) in Convertigo Mashup Composer.

Soap array boolean standard Defines if the multi-valued variable should be
seen as a Soap Array of a occurrence of
variables.
In the case of transaction or sequence defined as
a public SOAP method, this property allows to
specify of the current multi-valued variable has to
be seen in SOAP envelope as a Soap Array with
multiple values inside it or as an occurrence of
identical variables.

Source XMLVector expert Defines the source to use as variable value.
This property allows defining the variable value
as a source from a previous step.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and the
variable takes for value the XML NodeList
resulting from this execution.
The variable value will be an array of the text
contents. In the target sequence/transaction, it is
the standard Convertigo Array of Strings
variable.
If the XPath doesn't match or if the source is left
blank, the variable value is calculated as
explained in the main description of this object.

Property Type Category Description
2 - 107

Chapter "Convertigo Objects"
Common
EXAMPLES

The Call Transaction and Call Sequence steps enable to request any transaction or sequence

execution inside a given sequence. Those steps may provide input variables to the target

transaction or sequence, matching variables defined for the target transaction or sequence.

For more information about Call Transaction or Call Sequence steps, see "Call Transaction"

and "Call Sequence" steps documention and examples.

These examples show Call Sequence steps variables. The following examples are in

continuity with those given for Requestable single-valued variable and Requestable multi-

valued variable. Please refer to these objects examples for more information before

proceeding.

Example 1

We refer here to the userLogin and the userLoginWithDefault sequences of the

sample_refManual_variables project.

A Generic sequence, named testLogin, is created in order to call both sequences and

retrieve their XML response. To do so, this sequence includes two Call Sequence steps:

 Call_userLogin step launches the userLogin sequence,

 Call_userLoginWithDefault step launches the userLoginWithDefault

sequence.

Visibility int standard Defines the variable's visibility.
This property allows defining whether the
variable's value is masked or not in:
• log files: selecting this option will mask

the variable's value that may be printed in all
loggers,

• studio user interface: selecting this
option will mask the variable's value in the
Properties view from the Studio, as well as
in the tree of the Projects view,

• platform user interface: selecting this
option will mask the variable's value in the
test platform of the project and when editing
the project in Convertigo web administration,

• project's XML files: selecting this
option will mask the variable's value in the
project's XML files generated on the file
system when saving the objects from the
project.

Any combination of these options can be chosen,
it allows to customize precisely the variable's
value display. A last option is available: Mask
value in all. Selecting this option will mask
the variable's value in all previously described
cases.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Variables examples in the New
Project wizard.

Property Type Category Description
2 - 108 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
This sequence is created in the Sequences folder of the project and appears, with the two

steps, as follows in the Projects view:

 Figure 2 - 91: Call single-valued and multi-valued variables - Sequence and Call Sequence steps in Projects view

The Call_userLogin and the Call_userLoginWithDefault steps declare no variable,

and their Output property is set to true in order to add the returned XML response to the

testLogin sequence response.

At runtime, as no variable is provided by the Call Sequence steps to the called sequences, they

are executed with no variable provided in entry.

In the Studio, the resulting XML is displayed in the XML tab of the sequence editor:
2 - 109

Chapter "Convertigo Objects"
Common
 Figure 2 - 92: Call single-valued and multi-valued variables - Sequence execution result in sequence editor

WHAT HAPPENED ?

The lastName and firstNames variables were not provided by the Call Sequence steps,

thus each target sequence used its variables default values.

The loginUser sequence returned an error message as it requires values to be provided.

The loginUserWithDefault returned a default <login> message as it handles a default

case if values are not provided.

Example 2

This example is the same as the previous one except that the Call Sequence steps declare

variables.

A Generic sequence, named testLoginWithDefault, is created with two Call Sequence

steps and two Element steps:

 Call_userLogin Call Sequence step launches the userLogin sequence,

 <firstname> Element step writes an XML element in result XML with value "Node",

 <lastname> Element step writes an XML element in result XML with value "Value",

 Call_userLoginWithDefault Call Sequence step launches the

userLoginWithDefault sequence.

The Call_userLogin step declares two variables imported from the sequence and for which

default values have been modified as follows:

 a Call single-valued variable, named lastName, with the following parameters:

Call single-valued variable [

Default value="Value"

Source=[]

]

 a Call multi-valued variable, named firstNames, with the following parameters:
2 - 110 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
Call multi-valued variable [

Default value=["Fixed"]

Source=[]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 93: Call single-valued variable - Configuration example with default value

 Figure 2 - 94: Call multi-valued variable - Configuration example with default value

The Default value property of the Call multi-valued variable is edited in the Array editor:
2 - 111

Chapter "Convertigo Objects"
Common
 Figure 2 - 95: Call multi-valued variable - Default value property in Array editor

The Call_userLoginWithDefault step declares two variables imported from the

sequence and for which Source property is set as follows:

 a Call single-valued variable, named lastName, with the following parameters:

Call single-valued variable [

Default value=null

Source=[1303311539328, .] ==> reference to the preceding <lastname>

step

]

 a Call multi-valued variable, named firstNames, with the following parameters:

Call multi-valued variable [

Default value=null

Source=[1303311478425, .] ==> reference to the preceding

<firstname> step

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 112 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 96: Call single-valued variable - Configuration example with Source

 Figure 2 - 97: Call multi-valued variable - Configuration example with Source

The Source property of these two variables is set so that the variables are sourced from the

relevant previous steps. These properties are edited in the Step Source editor with the

following configuration (here, the firstNames variable Source property):
2 - 113

Chapter "Convertigo Objects"
Common
 Figure 2 - 98: Call multi-valued variable - Source of the firstNames variable

The sequence is created in the Sequences folder of the project and appears, with the steps,

as follows in the Projects view:
2 - 114 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 99: Call single-valued and multi-valued variables - Call Sequence steps with Call variables in Projects view

Both Call Sequence steps Output property is set to true in order to add the returned XML

responses to the testLogin sequence XML result.

At runtime, as variables are provided by the Call Sequence steps to the executed sequences,

they are executed with these variables values.

In the Studio, the resulting XML is displayed in the XML tab of the sequence editor:
2 - 115

Chapter "Convertigo Objects"
Common
 Figure 2 - 100: Call single-valued and multi-valued variables - Sequence execution result in sequence editor

WHAT HAPPENED?

The lastName and firstNames variables were provided by the Call Sequence steps,

thus each target sequence variables was overridden by the values sent by the steps.

Both of the loginUser and loginUserWithDefault sequences returned a successful

login message.
2 - 116 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
TEST CASE VARIABLES
2 - 117

Chapter "Convertigo Objects"
Common
TEST SINGLE-VALUED VARIABLE

OBJECT DESCRIPTION

Defines a single-valued variable for a Test Case.

A Test single-valued variable is used as a single-valued input variable for the transaction or

sequence targeted by the Test Case.

The variable value to use when executing the Test Case is specified in the Default value

property.

Note: In Convertigo Studio, when a Test single-valued variable is created in a Test Case, it can

be easily replaced by a Test multi-valued variable, using the right-click menu on the variable

and choosing the option Change to > MultiValued variable.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default value Object standard Defines the variable's default value(s).
This property allows defining a default value or
default list of values to use when no variable
value is provided to the parent transaction (or
sequence).
A variable is always created with a default value
set to null, which means that the variable is
only declared and has no default value.
At run time, Convertigo looks for the variable
among the query parameters, the JavaScript
scope or the objects in the context to retrieve its
value. If the variable is found, its value is used, if
not found, the default value specified by this
property is used.
In this last case, and if the default value of the
variable is not set (Default value property set to
null), an exception can be thrown by any object
or JavaScript code trying to use the undefined
variable.
It is up to the Convertigo developer to unset the
variable's null value, i.e. to set a default value
to the variable. He should prefer using a Test
Case to test specific values for the variable or
pass a variable value directly when invoking the
transaction (or sequence).
Note: To unset the null value of the property,
click on the cross-shaped button in the field.
Then, the default value is an empty string. You
can use it as is or add a value.

Description String standard Describes the variable.
This property is used to describe the variable in
the widget generated from its parent transaction
(or sequence) in Convertigo Mashup Composer.
2 - 118 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
EXAMPLES

Test Cases are really useful to test any particular case on a transaction or a sequence which

declares and uses variables.

The following examples are in continuity with those given for Request single-valued variable

and Request multi-valued variable. Please refer to these objects examples for more

information before proceeding.

Example 1

We refers here to the userLoginWithDefault sequence of the

sample_refManual_variables project.

A Test Case, named testJohnMarshall, has been created in order to test the sequence for

a given user. This user has two first names, John and Mike, his last name is Marshall.

For this given user, this Test Case declares two Test variables imported from the sequence

and for which default values have been modified as follows:

 a Test single-valued variable lastName with the following parameters:

Test single-valued variable [

default value="Marshall"

]

 a Test multi-valued variable firstNames with the following parameters:

Visibility int standard Defines the variable's visibility.
This property allows defining whether the
variable's value is masked or not in:
• log files: selecting this option will mask

the variable's value that may be printed in all
loggers,

• studio user interface: selecting this
option will mask the variable's value in the
Properties view from the Studio, as well as
in the tree of the Projects view,

• platform user interface: selecting this
option will mask the variable's value in the
test platform of the project and when editing
the project in Convertigo web administration,

• project's XML files: selecting this
option will mask the variable's value in the
project's XML files generated on the file
system when saving the objects from the
project.

Any combination of these options can be chosen,
it allows to customize precisely the variable's
value display. A last option is available: Mask
value in all. Selecting this option will mask
the variable's value in all previously described
cases.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Variables examples in the New
Project wizard.

Property Type Category Description
2 - 119

Chapter "Convertigo Objects"
Common
Test multi-valued variable [

Default value=["John", "Mike"]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 101: Test single-valued variable - Configuration example

 Figure 2 - 102: Test multi-valued variable - Configuration example

The Default value properties have been set to Marshall user's specific details. For the Test

multi-valued variable, it is edited in the Array editor:
2 - 120 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 103: Test multi-valued variable - Default value property in Array editor

The Test Case object is created in the Test cases folder of the sequence and appears as

follows in the Projects view with both Test single-valued variable and Test multi-valued

variable:

 Figure 2 - 104: Test single-valued and multi-valued variables - Test Case and Test variables in Projects view

At runtime, Test variables (with their default values) are inserted into the JavaScript scope of

the sequence. Thus, when running the Test Case (in the Studio or in the test platform), the

sequence is executed with the variables using the Test variables values.

In the Studio, the resulting XML is displayed in the XML tab of the sequence editor:
2 - 121

Chapter "Convertigo Objects"
Common
 Figure 2 - 105: Test single-valued and multi-valued variables - Sequence execution result in sequence editor

WHAT HAPPENED?

Both of sequence's variable default values have been overridden with the Test Case variables

default values.

Example 2

We refer here to the userLogin sequence of the sample_refManual_variables project.

A Test Case, named testJohn, has been created in order to test the sequence for a given

user without specifying it's last name. We want to verify that the sequence will return an error

message as expected.

For this given user, this Test Case declares two variables imported from the sequence and for

which default values have been modified as follows:

 a Test single-valued variable lastName with the following parameters:

Test single-valued variable [

Default value=null

]

 a Test multi-valued variable firstNames with the following parameters:

Test multi-valued variable [

Default value=["John"]

]

These parameters are edited in the Properties view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Variables examples in the New
Project wizard.
2 - 122 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 106: Test single-valued variable - Configuration example

 Figure 2 - 107: Test multi-valued variable - Configuration example

The lastName variable Default value property is set to null value in order to be ignored, i.e.

not to be sent to the sequence.

The firstNames variable Default value property is edited in the Array editor:
2 - 123

Chapter "Convertigo Objects"
Common
 Figure 2 - 108: Test multi-valued variable - Default value property in Array editor

The Test Case is created in the Test cases folder of the sequence and appears as follows in

the Projects view with both Test single-valued variable and Test multi-valued variable:

 Figure 2 - 109: Test single-valued and multi-valued variables - Test Case and Test variables in Projects view

At runtime, only firstNames variable (with its default values) is inserted into the JavaScript

scope of the sequence. Thus, when running the Test Case (in the Studio or in the test

platform), the sequence is executed with the firstNames variable using the Test variable

values.

In the Studio, the resulting XML is displayed in the XML tab of the sequence editor:
2 - 124 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 110: Test single-valued and multi-valued variables - Sequence execution result in sequence editor

WHAT HAPPENED?

The firstNames variable has been provided by the Test Case, thus sequence's

firstNames variable default value "null" has been overridden by the Test variable value

"[John]".

The lastName variable has not been provided by the Test Case, thus sequence's lastName

variable default value "null" has been used.

The test fails as expected (following the sequence’s implementation) and the error message is

returned.
2 - 125

Chapter "Convertigo Objects"
Common
TEST MULTI-VALUED VARIABLE

OBJECT DESCRIPTION

Defines a multi-valued variable for a Test Case.

A Test multi-valued variable is used as a multi-valued input variable for the transaction or

sequence targeted by the Test Case.

The variable values to use when executing the Test Case are specified in the Default value

property.

Note: In Convertigo Studio, when a Test multi-valued variable is created in a Test Case, it can

be easily replaced by a Test single-valued variable, using the right-click menu on the variable

and choosing the option Change to > SingleValued variable.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default value Object standard Defines the variable's default value(s).
This property allows defining a default value or
default list of values to use when no variable
value is provided to the parent transaction (or
sequence).
A variable is always created with a default value
set to null, which means that the variable is
only declared and has no default value.
At run time, Convertigo looks for the variable
among the query parameters, the JavaScript
scope or the objects in the context to retrieve its
value. If the variable is found, its value is used, if
not found, the default value specified by this
property is used.
In this last case, and if the default value of the
variable is not set (Default value property set to
null), an exception can be thrown by any object
or JavaScript code trying to use the undefined
variable.
It is up to the Convertigo developer to unset the
variable's null value, i.e. to set a default value
to the variable. He should prefer using a Test
Case to test specific values for the variable or
pass a variable value directly when invoking the
transaction (or sequence).
Note: To unset the null value of the property,
click on the cross-shaped button in the field.
Then, the default value is an empty string. You
can use it as is or add a value.

Description String standard Describes the variable.
This property is used to describe the variable in
the widget generated from its parent transaction
(or sequence) in Convertigo Mashup Composer.
2 - 126 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
EXAMPLES

Test Cases are really useful to test any particular case on a transaction or a sequence which

declares and uses variables.

The following examples are in continuity with those given for Request single-valued variable

and Request multi-valued variable. Please refer to these objects examples for more

information before proceeding.

Example 1

We refers here to the userLoginWithDefault sequence of the

sample_refManual_variables project.

A Test Case, named testJohnMarshall, has been created in order to test the sequence for

a given user. This user has two first names, John and Mike, his last name is Marshall.

For this given user, this Test Case declares two Test variables imported from the sequence

Soap array boolean standard Defines if the multi-valued variable should be
seen as a Soap Array of a occurrence of
variables.
In the case of transaction or sequence defined as
a public SOAP method, this property allows to
specify of the current multi-valued variable has to
be seen in SOAP envelope as a Soap Array with
multiple values inside it or as an occurrence of
identical variables.

Visibility int standard Defines the variable's visibility.
This property allows defining whether the
variable's value is masked or not in:
• log files: selecting this option will mask

the variable's value that may be printed in all
loggers,

• studio user interface: selecting this
option will mask the variable's value in the
Properties view from the Studio, as well as
in the tree of the Projects view,

• platform user interface: selecting this
option will mask the variable's value in the
test platform of the project and when editing
the project in Convertigo web administration,

• project's XML files: selecting this
option will mask the variable's value in the
project's XML files generated on the file
system when saving the objects from the
project.

Any combination of these options can be chosen,
it allows to customize precisely the variable's
value display. A last option is available: Mask
value in all. Selecting this option will mask
the variable's value in all previously described
cases.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Variables examples in the New
Project wizard.

Property Type Category Description
2 - 127

Chapter "Convertigo Objects"
Common
and for which default values have been modified as follows:

 a Test single-valued variable lastName with the following parameters:

Test single-valued variable [

default value="Marshall"

]

 a Test multi-valued variable firstNames with the following parameters:

Test multi-valued variable [

Default value=["John", "Mike"]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 111: Test single-valued variable - Configuration example

 Figure 2 - 112: Test multi-valued variable - Configuration example
2 - 128 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
The Default value properties have been set to Marshall user's specific details. For the Test

multi-valued variable, it is edited in the Array editor:

 Figure 2 - 113: Test multi-valued variable - Default value property in Array editor

The Test Case object is created in the Test cases folder of the sequence and appears as

follows in the Projects view with both Test single-valued variable and Test multi-valued

variable:

 Figure 2 - 114: Test single-valued and multi-valued variables - Test Case and Test variables in Projects view

At runtime, Test variables (with their default values) are inserted into the JavaScript scope of

the sequence. Thus, when running the Test Case (in the Studio or in the test platform), the

sequence is executed with the variables using the Test variables values.

In the Studio, the resulting XML is displayed in the XML tab of the sequence editor:
2 - 129

Chapter "Convertigo Objects"
Common
 Figure 2 - 115: Test single-valued and multi-valued variables - Sequence execution result in sequence editor

WHAT HAPPENED?

Both of sequence's variable default values have been overridden with the Test Case variables

default values.

Example 2

We refer here to the userLogin sequence of the sample_refManual_variables project.

A Test Case, named testJohn, has been created in order to test the sequence for a given

user without specifying it's last name. We want to verify that the sequence will return an error

message as expected.

For this given user, this Test Case declares two variables imported from the sequence and for

which default values have been modified as follows:

 a Test single-valued variable lastName with the following parameters:

Test single-valued variable [

Default value=null

]

 a Test multi-valued variable firstNames with the following parameters:

Test multi-valued variable [

Default value=["John"]

]

These parameters are edited in the Properties view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Variables examples in the New
Project wizard.
2 - 130 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 116: Test single-valued variable - Configuration example

 Figure 2 - 117: Test multi-valued variable - Configuration example

The lastName variable Default value property is set to null value in order to be ignored, i.e.

not to be sent to the sequence.

The firstNames variable Default value property is edited in the Array editor:
2 - 131

Chapter "Convertigo Objects"
Common
 Figure 2 - 118: Test multi-valued variable - Default value property in Array editor

The Test Case is created in the Test cases folder of the sequence and appears as follows in

the Projects view with both Test single-valued variable and Test multi-valued variable:

 Figure 2 - 119: Test single-valued and multi-valued variables - Test Case and Test variables in Projects view

At runtime, only firstNames variable (with its default values) is inserted into the JavaScript

scope of the sequence. Thus, when running the Test Case (in the Studio or in the test

platform), the sequence is executed with the firstNames variable using the Test variable

values.

In the Studio, the resulting XML is displayed in the XML tab of the sequence editor:
2 - 132 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
 Figure 2 - 120: Test single-valued and multi-valued variables - Sequence execution result in sequence editor

WHAT HAPPENED?

The firstNames variable has been provided by the Test Case, thus sequence's

firstNames variable default value "null" has been overridden by the Test variable value

"[John]".

The lastName variable has not been provided by the Test Case, thus sequence's lastName

variable default value "null" has been used.

The test fails as expected (following the sequence’s implementation) and the error message is

returned.
2 - 133

Chapter "Convertigo Objects"
Common
2.1.3 References
2 - 134 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
SCHEMA REFERENCES
2 - 135

Chapter "Convertigo Objects"
Common
IMPORT XSD SCHEMA

OBJECT DESCRIPTION

References an XSD file and imports its schemas in this project.

The Import XSD schema reference enhances the current project's schema by importing the

referenced XSD file.

The imported XSD objects (types, elements, groups, ...) can be used anywhere in current

project sequences, using the Assigned XSD Complex type QName and Assigned XSD

Element ref QName properties.

Note: The imported XSD file should declare a target namespace different from the target

namespace of the current project. It is mandatory for an XSD to be imported in another.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

XSD URL String standard Defines the URL of the XSD file to import.
If the XSD file to import is outside of the current
project (either a remote file or a file on the
developer's computer but external to the project),
this XSD URL property is used to define the file's
URL.
Notes:
• If the file to import is located in the file system

(local or network drives), use the "Browse"
button of the wizard: it will automatically
create the correct file URL depending on your
operating system (file://[host]/path
or file:[//host]/path).

• Only one of both XSD local path or XSD
URL properties can be used. If both are filled,
only XSD local path property is used.

XSD local path String standard Defines the Convertigo local path of the imported
XSD file.
If the XSD file to import is a local file in the
current project or in the current workspace, this
XSD local path property is used to define the
local file path.
This path is relative to Convertigo environment.
Relative paths starting with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
Note: Only one of both XSD local path or XSD
URL properties can be used. If both are filled,
only XSD local path property is used.
2 - 136 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
IMPORT WSDL SCHEMA

OBJECT DESCRIPTION

References a WSDL file and imports its schemas in this project.

The Import WSDL schema reference enhances the current project's schema by importing the

referenced WSDL file's schemas.

The imported XSD objects (types, elements, groups, ...) can be used anywhere in current

project sequences, using the Assigned XSD Complex type QName and Assigned XSD

Element ref QName properties.

Note: The imported WSDL file should declare a target namespace different from the target

namespace of the current project. It is mandatory for an XSD to be imported in another.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

WSDL URL String standard Defines the URL of the WSDL file to import.
If the WSDL file to import is outside of the current
project (either a remote file or a file on the
developer's computer but external to the project),
this WSDL URL property is used to define the
file's original URL.
Notes:
• If the file to import is located in the file system

(local or network drives), use the "Browse"
button of the wizard: it will automatically
create the correct file URL depending on your
operating system (file://[host]/path
or file:[//host]/path).

• Once imported, the WSDL file will be copied
locally in the current project's resources. This
will then fill the WSDL local path property. If
both are filled, only WSDL local path
property is used.

WSDL local path String standard Defines the Convertigo local path of the imported
WSDL file.
If the WSDL file to import is a local file in the
current project or in the current workspace, this
WSDL local path property is used to define the
local file path.
This path is relative to Convertigo environment.
Relative paths starting with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
Note: Only one of both WSDL local path or
WSDL URL properties can be used. If both are
filled, only WSDL local path property is used.
2 - 137

Chapter "Convertigo Objects"
Common
INCLUDE XSD SCHEMA

OBJECT DESCRIPTION

References an XSD file and includes its schemas in this project.

The Include XSD schema reference enhances the current project's schema by including the

referenced XSD file.

The included XSD objects (types, elements, groups, ...) can be used anywhere in current

project sequences, using the Assigned XSD Complex type QName and Assigned XSD

Element ref QName properties.

Note: The included XSD file should declare the same target namespace as the current project.

It is mandatory for an XSD to be included in another.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

XSD URL String standard Defines the URL of the XSD file to import.
If the XSD file to import is outside of the current
project (either a remote file or a file on the
developer's computer but external to the project),
this XSD URL property is used to define the file's
URL.
Notes:
• If the file to import is located in the file system

(local or network drives), use the "Browse"
button of the wizard: it will automatically
create the correct file URL depending on your
operating system (file://[host]/path
or file:[//host]/path).

• Only one of both XSD local path or XSD
URL properties can be used. If both are filled,
only XSD local path property is used.

XSD local path String standard Defines the Convertigo local path of the imported
XSD file.
If the XSD file to import is a local file in the
current project or in the current workspace, this
XSD local path property is used to define the
local file path.
This path is relative to Convertigo environment.
Relative paths starting with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
Note: Only one of both XSD local path or XSD
URL properties can be used. If both are filled,
only XSD local path property is used.
2 - 138 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
IMPORT PROJECT SCHEMA

OBJECT DESCRIPTION

References a Convertigo project and imports its schema in this project.

The Import Project schema reference enhances the current project's schema by importing the

referenced project's XSD.

The imported XSD objects are used when Call Sequence/Call Transaction steps are used in

current project's sequences. In this case, when creating a Call Sequence/Call Transaction

step, the Import Project schema reference is automatically created.

The imported XSD objects can also be used anywhere else in current project sequences, using

the Assigned XSD Complex type QName and Assigned XSD Element ref QName

properties.

Note: The referenced project must be present in the same Convertigo as current project.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Project name String standard The name of the Convertigo project which XSD is
referenced in this project.
This property allows to choose the project name
to reference from all projects existing in the
Convertigo.
2 - 139

Chapter "Convertigo Objects"
Common
WEB SERVICE REFERENCES
2 - 140 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Common
IMPORT WEB SERVICE

OBJECT DESCRIPTION

References a web service by creating the HTTP connector with all transactions matching the

web service methods, referencing its WSDL file and importing its schemas in this project.

The Import web service reference creates an HTTP connector configured to target the web

service. It automatically creates XML HTTP transactions for each method described by the

web service, including their variables.

The Import web service reference also enhances the current project's schema by importing the

referenced WSDL file's schemas (such as an Import WSDL schema reference).

The imported XSD objects (types, elements, groups, ...) are automatically used to define the

transactions output schemas. They can also be used anywhere in current project sequences,

using the Assigned XSD Complex type QName and Assigned XSD Element ref QName

properties.

Notes:

 The referenced WSDL file is copied locally in current project's resources, in wsdl folder.

 The imported WSDL file should declare a target namespace different from the target

namespace of the current project. It is mandatory for an XSD to be imported in another.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

WSDL URL String standard Defines the URL of the WSDL file to import.
If the WSDL file to import is outside of the current
project (either a remote file or a file on the
developer's computer but external to the project),
this WSDL URL property is used to define the
file's original URL.
Notes:
• If the file to import is located in the file system

(local or network drives), use the "Browse"
button of the wizard: it will automatically
create the correct file URL depending on your
operating system (file://[host]/path
or file:[//host]/path).

• Once imported, the WSDL file will be copied
locally in the current project's resources. This
will then fill the WSDL local path property. If
both are filled, only WSDL local path
property is used.
2 - 141

Chapter "Convertigo Objects"
Common
WSDL local path String standard Defines the Convertigo local path of the imported
WSDL file.
If the WSDL file to import is a local file in the
current project or in the current workspace, this
WSDL local path property is used to define the
local file path.
This path is relative to Convertigo environment.
Relative paths starting with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
Note: Only one of both WSDL local path or
WSDL URL properties can be used. If both are
filled, only WSDL local path property is used.

Property Type Category Description
2 - 142 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Mobile Application
2.2 Mobile Application
2 - 143

Chapter "Convertigo Objects"
Mobile Application
2.2.1 Main objects
2 - 144 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Mobile Application
MOBILE APPLICATION

OBJECT DESCRIPTION

Defines the mobile application implemented in this project.

The Mobile application object allows the developer to define a mobile application in a

Convertigo Mobile project. Only one Mobile application object can be associated with a

Convertigo Project.

The Mobile application object represents the mobile application developed in project's

resources. It takes place for the web mobile application as well as for the native device

applications that are built using Convertigo Mobile Builder server, leading to the generation of

mobile applications that can be installed on devices.

The Mobile application object includes the Flash Update functionality. When mobile application

pages and resources are changed on the Convertigo project, the Flash Update will

automatically update them in the mobile applications installed on devices. This feature can be

enabled or not.

Most properties of Mobile application are taken into account at application build. They cannot

be updated thanks to the Flash Update: the app needs to be built again and updated on stores

when these properties are changed. It is also the case for the config.xml configuration file:

if it is changed, it is taken into account only at application re-build.

Only the following Mobile application properties are always directly updated at Flash Update:

 Enable Flash Update property,

 Flash Update requires user confirmation property,

 Application version property (only updated in JavaScript variable, accessible using

C8O.getCordovaEnv("currentVersion"); method),

 Splashscreen hiding mode property,

 and Accessibility property.

Note: If no file content has been modified, the Flash Update does not detect that some updates

were made. The following cases are not managed for the moment:

 When updating the Application version property: if no other file content is updated, the

Flash Update does not detect this change and the new value is not updated. The value

available in JavaScript expression C8O.getCordovaEnv("currentVersion");

remains the old one.

 When renaming or deleting file(s): if no other file content is updated, the file renaming or

deletion is not detected by the Flash Update. These changes are not updated on mobile

devices and the old files remain.

These limitations are due to the fact that the Flash Update relies for now on the update date of

files. If you want one of these changes to be taken into account, update one of the project

resource files and save this update. It will lead the Flash Update to detect that an update was

made.
2 - 145

Chapter "Convertigo Objects"
Mobile Application
OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Accessibility Accessibility expert Defines the mobile application's accessibility.
This property can take the following values:
• Public: The mobile application is runnable

from everyone, it is visible in the Test
Platform and it can be built. This is the default
value.

• Hidden: The mobile application is runnable
but only from people who know the execution
URL, it is not visible in the Test Platform so
cannot be built, excepted for people who are
identified in the Test Platform as
administrator.

• Private: The mobile application is only
runnable from people who are identified in
the Test Platform as administrator, it is not
visible in the Test Platform and cannot be
built, excepted for people who are identified
in the Test Platform as administrator.

Note: In the Test Platform:
• The administrator user (authenticated in

Administration Console or Test Platform) can
see, run and build all mobile applications, no
matter what their Accessibility is.

• The test user (authenticated in the Test
Platform or in case of anonymous access)
can see, run and build public mobile
applications and run hidden ones if he knows
their execution URL.

Application ID String standard Defines the mobile application ID.
If empty, the mobile application ID is set by
default to
com.convertigo.mobile.<project_name>
, with <project_name> the name of the
Convertigo project.
The mobile application ID is used to build the
mobile applications on the Convertigo Mobile
builder platform.
Note: After the application is built, this value is
available in client JavaScript code using the
C8O.getCordovaEnv("applicationId");
method.

Application author
email

String standard Defines the author email of the mobile
application.
When the mobile application is built, the
Application author email property defines the
built application author email in the build server.
Note: After the application is built, this value is
available in client JavaScript code using the
C8O.getCordovaEnv("applicationAuthor
Email"); method.
2 - 146 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Mobile Application
Application author
name

String standard Defines the author name of the mobile
application.
When the mobile application is built, the
Application author name property defines the
built application author name in the build server.
Note: After the application is built, this value is
available in client JavaScript code using the
C8O.getCordovaEnv("applicationAuthor
Name"); method.

Application author
website

String standard Defines the website URL of the mobile
application's author.
When the mobile application is built, the
Application author website property defines the
built application author's website URL in the build
server.
Note: After the application is built, this value is
available in client JavaScript code using the
C8O.getCordovaEnv("applicationAuthor
Website"); method.

Application
description

String standard Defines the short description of the mobile
application.
When the mobile application is built, the
Application description property defines the
built application short description in the build
server.
Note: After the application is built, this value is
available in client JavaScript code using the
C8O.getCordovaEnv("applicationDescri
ption"); method.

Application name String standard Defines the name used by the mobile application.
When the mobile application is built, the
Application name property defines the built
application name, used to identify the application
in the build server.
Note: After the application is built, this value is
available in client JavaScript code using the
C8O.getCordovaEnv("applicationName")
; method.

Application version String standard Defines the mobile application's version.
This property allows the project's developer to set
a version to the mobile application. It is used for
the built mobile application.
The version syntax should be of the following
form: x.y.z, with x, y and z being numbers. If
not, the value is automatically transformed to an
x.y.z version. For example, "2" will be
transformed to "2.0.0", "3.1" to "3.1.0",
"3.1.4_beta" to "3.1.4".
If left empty, the version of the parent Project is
used.
Note: After the application is built, this value is
available in client JavaScript code using the
C8O.getCordovaEnv("builtVersion");
method. If this value is updated thanks to the
Flash Update, the current version (not from build)
is available in client JavaScript code using the
C8O.getCordovaEnv("currentVersion");
method.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Property Type Category Description
2 - 147

Chapter "Convertigo Objects"
Mobile Application
Convertigo server
endpoint

String standard Defines the URL of the Convertigo server used
by the mobile application.
The Convertigo server endpoint property
defines the accessible URL of the Convertigo
server where the project is deployed. This
Convertigo server needs to be accessed by the
mobile application after installation on devices.
If this property is left empty, the default value is
set to http://
<current_Convertigo_host:port>/
<Convertigo_webapp_name>, with:
• <current_Convertigo_host:port>

being the host name or IP address, plus port
number, of the Convertigo server currently
accessed,

• <Convertigo_webapp_name> being the
current Convertigo webapp name (for
example convertigo for Studio or on-
premises Server, cems for Cloud Server).

Note: After the application is built, this value is
available in client JavaScript code using the
C8O.getCordovaEnv("endPoint");
method.

Enable Flash Update boolean standard Defines whether the Flash Update feature is
enabled for this mobile application.
The Flash Update feature allows the mobile
application to be notified when updates have
been deployed on the server. The installed
applications on mobile devices are then be
automatically updated.
The Enable Flash Update property can be set to
true, enabling the Flash Update, or to false,
disabling the Flash Update. Default value is
true.
Note: When this property is changed, the built
applications already installed on devices will
automatically take the new value into account,
allowing the developer to switch between Flash
Update modes without building again the app
and re-deploying it on the stores.

Flash Update build
mode

FlashUpdateBu
ildMode

expert Defines the mobile application build mode.
The mobile application can be built empty for
installation on devices or already containing the
all user interface. The Build mode property can
take one of the following values:
• full: the built mobile application will contain

all the user interface and resources,
• light: the built mobile application is a shell

that will download the user interface and
resources at first launch. In this case, the
Flash Update feature should be enabled
thanks to the Enable Flash Update property,
otherwise, the UI and resources will not be
downloaded and the app will remain empty.

Property Type Category Description
2 - 148 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Mobile Application
Flash Update
requires user
confirmation

boolean expert Defines if the Flash Update feature requires the
user confirmation.
When the Flash Update feature is enabled thanks
to the Enable Flash Update property, the Flash
Update requires user confirmation property
allows to define whether the application update is
done automatically at application startup
(property set to false), or after a confirmation
from the mobile application's user (property set to
true). Default value is false, which sets the
Flash Update to be automatic.
Note: When this property is changed, the built
applications already installed on devices will
automatically take the new value into account,
allowing the developer to switch between Flash
Update modes without building again the app
and re-deploying it on the stores.

Flash Update timeout long expert Defines the maximum time (in ms) for Flash
Update to check for application resource
updates.
If the timeout is reached, the Flash Update
automatically redirects to the local application
without update.
An infinite timeout can be defined by setting this
property to 0: the Flash Update will wait
endlessly for updates.
In case of network failure (no connection to
network from the device, HTTP error from server,
etc.), the timeout is not used and the Flash
Update automatically redirects to the local
application.

Mobile builder
authentication token

String expert Defines the authentication token of the Mobile
builder account to use to build the mobile
application.
When building a mobile application, a Mobile
builder account (which is nothing more than a
PhoneGap build account) is mandatory.
Convertigo provides one by default, used by
default in Convertigo engine.
This default Mobile builder authentication token
can be configured at engine level, in the Mobile
builder tab of the Administration Console's
Configuration page. This engine level
authentication token will be used by default for all
mobile applications built by the Convertigo.
The Mobile builder authentication token
property allows to override the Mobile builder
authentication token for this mobile application's
build. If left empty, the common Mobile builder
authentication token defined at Convertigo
engine level is used.
Note: Once a PhoneGap build account is
configured thanks to the Mobile builder
authentication token, do not forget to configure all
mobile platforms certificates and keys in
accordance. Refer to the documentation of each
platform object for more information.

Property Type Category Description
2 - 149

Chapter "Convertigo Objects"
Mobile Application
Splashscreen hiding
mode

SplashRemove
Mode

standard Defines the hiding mode of the mobile
application's splashscreen.
This property allows the project's developer to
configure how and when the application
splashscreen has to be hidden. This property can
take the following values:
• Before Flash Update: The application's

splashscreen is automatically hidden by the
C8O JavaScript library, before the Flash
Update starts. The Flash Update page is
visible in the mobile application and then
redirects to the application pages.

• After Flash Update: The application's
splashscreen is automatically hidden by the
C8O JavaScript library, after the Flash
Update starts. The Flash Update page is not
visible in the mobile application, masked by
the splashscreen. The splashscreen is
hidden when the library redirects to the
application pages.

• Manual: The application's splashscreen is
not automatically hidden by the C8O
JavaScript library. The splashscreen must be
explicitely hidden by the mobile application
JavaScript code, using:
C8O.splashscreenHide(); method.

For Android platform, the config.xml file can
declare a timeout for splashscreen hiding:
SplashScreenDelay.
Note: The C8O JavaScript API includes two
methods to manipulate the splashscreen directly
in application JavaScript code:
• C8O.splashscreenShow(); allows to

show the splashscreen,
• C8O.splashscreenHide(); allows to

hide the splashscreen.

Property Type Category Description
2 - 150 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Mobile Application
2.2.2 Platforms
2 - 151

Chapter "Convertigo Objects"
Mobile Application
MOBILE PLATFORMS
2 - 152 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Mobile Application
ANDROID

OBJECT DESCRIPTION

Android mobile platform

Android mobile platform allows creating an Android application from the Mobile application

below which it is added.

The mobile application dedicated to the platform is built from:

 the common resources of the Mobile application, located in <project_folder>/

DisplayObjects/mobile (with <project_folder> the root folder of your mobile

project resources),

 and are possibly completed by the resources dedicated to the platform, located in

<project_folder>/DisplayObjects/platforms/<platform_object_name>

(with <project_folder> the root folder of your mobile project resources, and with

<platform_object_name> the resources folder named after your mobile platform

object name).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Android certificate
password

String expert Defines Android certificate password to use for
building the Android application from this
application.
When building a mobile application for Android
platform, an Android certificate (including title,
password and keystore password) is mandatory.
Convertigo provides one by default, this Android
certificate is used by default in Convertigo
engine.
This default Android certificate can be configured
at engine level, in the Mobile builder tab of the
Administration Console's Configuration page.
This engine level Android certificate will be used
by default for all Android dedicated applications
built by the Convertigo.
The Android certificate password property
allows to override the Android certificate
password for this mobile application's build. If left
empty, the common Android certificate password
defined at Convertigo engine level is used.
Note: The Android certificate is linked to a
PhoneGap build account. If a Mobile builder
authentication token is configured in the Mobile
application or at Convertigo engine level, the
Android certificate (defined here or at Convertigo
engine level) must be one of the "Signing keys"
declared in this PhoneGap build account.
2 - 153

Chapter "Convertigo Objects"
Mobile Application
Android certificate
title

String expert Defines Android certificate title for building the
Android application from this application.
When building a mobile application for Android
platform, an Android certificate (including title,
password and keystore password) is mandatory.
Convertigo provides one by default, the
Convertigo Android certificate is used by default
in Convertigo engine, .
This default Android certificate can be configured
at engine level, in the Mobile builder tab of the
Administration Console's Configuration page.
This engine level Android certificate will be used
by default for all Android dedicated applications
built by the Convertigo.
The Android certificate title property allows to
override the Android certificate title for this mobile
application's build. If left empty, the common
Android certificate title defined at Convertigo
engine level is used.
Note: The Android certificate is linked to a
PhoneGap build account. If a Mobile builder
authentication token is configured in the Mobile
application or at Convertigo engine level, the
Android certificate (defined here or at Convertigo
engine level) must be one of the "Signing keys"
declared in this PhoneGap build account.

Android keystore
password

String expert Defines Android keystore password to use for
building the Android application from this
application.
When building a mobile application for Android
platform, an Android certificate (including title,
password and keystore password) is mandatory.
Convertigo provides one by default, this Android
certificate is used by default in Convertigo
engine.
This default Android certificate can be configured
at engine level, in the Mobile builder tab of the
Administration Console's Configuration page.
This engine level Android certificate will be used
by default for all Android dedicated applications
built by the Convertigo.
The Android keystore password property
allows to override the Android keystore password
for this mobile application's build. If left empty, the
common Android keystore password defined at
Convertigo engine level is used.
Note: The Android certificate is linked to a
PhoneGap build account. If a Mobile builder
authentication token is configured in the Mobile
application or at Convertigo engine level, the
Android certificate (defined here or at Convertigo
engine level) must be one of the "Signing keys"
declared in this PhoneGap build account.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Property Type Category Description
2 - 154 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Mobile Application
BLACKBERRY

OBJECT DESCRIPTION

BlackBerry mobile platform

BlackBerry mobile platform allows creating a BlackBerry application from the Mobile

application below which it is added.

The mobile application dedicated to the platform is built from:

 the common resources of the Mobile application, located in <project_folder>/

DisplayObjects/mobile (with <project_folder> the root folder of your mobile

project resources),

 and are possibly completed by the resources dedicated to the platform, located in

<project_folder>/DisplayObjects/platforms/<platform_object_name>

(with <project_folder> the root folder of your mobile project resources, and with

<platform_object_name> the resources folder named after your mobile platform

object name).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

BlackBerry key
password

String expert Defines BlackBerry key password to use for
building the BlackBerry application from this
application.
When building a mobile application for
BlackBerry platform, a BlackBerry key (including
title and password) is mandatory. Convertigo
provides one by default, this BlackBerry key is
used by default in Convertigo engine.
This default BlackBerry key can be configured at
engine level, in the Mobile builder tab of the
Administration Console's Configuration page.
This engine level BlackBerry key will be used by
default for all Android dedicated applications built
by the Convertigo.
The BlackBerry key password property allows
to override the BlackBerry key password for this
mobile application's build. If left empty, the
common BlackBerry key password defined at
Convertigo engine level is used.
Note: The BlackBerry key is linked to a
PhoneGap build account. If a Mobile builder
authentication token is configured in the Mobile
application or at Convertigo engine level, the
BlackBerry key (defined here or at Convertigo
engine level) must be one of the "Signing keys"
declared in this PhoneGap build account.
2 - 155

Chapter "Convertigo Objects"
Mobile Application
BlackBerry key title String expert Defines BlackBerry key title to use for building
the BlackBerry application from this application.
When building a mobile application for
BlackBerry platform, a BlackBerry key (including
title and password) is mandatory. Convertigo
provides one by default, this BlackBerry key is
used by default in Convertigo engine.
This default BlackBerry key can be configured at
engine level, in the Mobile builder tab of the
Administration Console's Configuration page.
This engine level BlackBerry key will be used by
default for all BlackBerry dedicated applications
built by the Convertigo.
The BlackBerry key title property allows to
override the BlackBerry key title for this mobile
application's build. If left empty, the common
BlackBerry key title defined at Convertigo engine
level is used.
Note: The BlackBerry key is linked to a
PhoneGap build account. If a Mobile builder
authentication token is configured in the Mobile
application or at Convertigo engine level, the
BlackBerry key (defined here or at Convertigo
engine level) must be one of the "Signing keys"
declared in this PhoneGap build account.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Property Type Category Description
2 - 156 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Mobile Application
BLACKBERRY 10

OBJECT DESCRIPTION

BlackBerry 10 mobile platform

BlackBerry 10 mobile platform allows creating a BlackBerry 10 application from the Mobile

application below which it is added.

The mobile application dedicated to the platform is built from:

 the common resources of the Mobile application, located in <project_folder>/

DisplayObjects/mobile (with <project_folder> the root folder of your mobile

project resources),

 and are possibly completed by the resources dedicated to the platform, located in

<project_folder>/DisplayObjects/platforms/<platform_object_name>

(with <project_folder> the root folder of your mobile project resources, and with

<platform_object_name> the resources folder named after your mobile platform

object name).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

BlackBerry key
password

String expert Defines BlackBerry key password to use for
building the BlackBerry application from this
application.
When building a mobile application for
BlackBerry platform, a BlackBerry key (including
title and password) is mandatory. Convertigo
provides one by default, this BlackBerry key is
used by default in Convertigo engine.
This default BlackBerry key can be configured at
engine level, in the Mobile builder tab of the
Administration Console's Configuration page.
This engine level BlackBerry key will be used by
default for all Android dedicated applications built
by the Convertigo.
The BlackBerry key password property allows
to override the BlackBerry key password for this
mobile application's build. If left empty, the
common BlackBerry key password defined at
Convertigo engine level is used.
Note: The BlackBerry key is linked to a
PhoneGap build account. If a Mobile builder
authentication token is configured in the Mobile
application or at Convertigo engine level, the
BlackBerry key (defined here or at Convertigo
engine level) must be one of the "Signing keys"
declared in this PhoneGap build account.
2 - 157

Chapter "Convertigo Objects"
Mobile Application
BlackBerry key title String expert Defines BlackBerry key title to use for building
the BlackBerry application from this application.
When building a mobile application for
BlackBerry platform, a BlackBerry key (including
title and password) is mandatory. Convertigo
provides one by default, this BlackBerry key is
used by default in Convertigo engine.
This default BlackBerry key can be configured at
engine level, in the Mobile builder tab of the
Administration Console's Configuration page.
This engine level BlackBerry key will be used by
default for all BlackBerry dedicated applications
built by the Convertigo.
The BlackBerry key title property allows to
override the BlackBerry key title for this mobile
application's build. If left empty, the common
BlackBerry key title defined at Convertigo engine
level is used.
Note: The BlackBerry key is linked to a
PhoneGap build account. If a Mobile builder
authentication token is configured in the Mobile
application or at Convertigo engine level, the
BlackBerry key (defined here or at Convertigo
engine level) must be one of the "Signing keys"
declared in this PhoneGap build account.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Property Type Category Description
2 - 158 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Mobile Application
IOS

OBJECT DESCRIPTION

iOS mobile platform

iOS mobile platform allows creating an iOS application from the Mobile application below which

it is added.

The mobile application dedicated to the platform is built from:

 the common resources of the Mobile application, located in <project_folder>/

DisplayObjects/mobile (with <project_folder> the root folder of your mobile

project resources),

 and are possibly completed by the resources dedicated to the platform, located in

<project_folder>/DisplayObjects/platforms/<platform_object_name>

(with <project_folder> the root folder of your mobile project resources, and with

<platform_object_name> the resources folder named after your mobile platform

object name).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

iOS certificate
password

String expert Defines iOS certificate password to use for
building the iOS application from this application.
When building a mobile application for iOS
platform, an iOS certificate (including title and
password) is mandatory. Convertigo provides
one by default, this iOS certificate is used by
default in Convertigo engine.
This default iOS certificate can be configured at
engine level, in the Mobile builder tab of the
Administration Console's Configuration page.
This engine level iOS certificate will be used by
default for all iOS dedicated applications built by
the Convertigo.
The iOS certificate password property allows to
override the iOS certificate password for this
mobile application's build. If left empty, the
common iOS certificate password defined at
Convertigo engine level is used.
Note: The iOS certificate is linked to a PhoneGap
build account. If a Mobile builder
authentication token is configured in the Mobile
application or at Convertigo engine level, the iOS
certificate (defined here or at Convertigo engine
level) must be one of the "Signing keys" declared
in this PhoneGap build account.
2 - 159

Chapter "Convertigo Objects"
Mobile Application
iOS certificate title String expert Defines iOS certificate title to use for building the
iOS application from this application.
When building a mobile application for iOS
platform, an iOS certificate (including title and
password) is mandatory. Convertigo provides
one by default, this iOS certificate is used by
default in Convertigo engine.
This default iOS certificate can be configured at
engine level, in the Mobile builder tab of the
Administration Console's Configuration page.
This engine level iOS certificate will be used by
default for all iOS dedicated applications built by
the Convertigo.
The iOS certificate title property allows to
override the iOS certificate title for this mobile
application's build. If left empty, the common iOS
certificate title defined at Convertigo engine level
is used.
Note: The iOS certificate is linked to a PhoneGap
build account. If a Mobile builder
authentication token is configured in the Mobile
application or at Convertigo engine level, the iOS
certificate (defined here or at Convertigo engine
level) must be one of the "Signing keys" declared
in this PhoneGap build account.

Property Type Category Description
2 - 160 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Mobile Application
WINDOWS 8

OBJECT DESCRIPTION

Windows 8 platform

Windows 8 platform allows creating a Windows 8 application from the Mobile application below

which it is added.

The mobile application dedicated to the platform is built from:

 the common resources of the Mobile application, located in <project_folder>/

DisplayObjects/mobile (with <project_folder> the root folder of your mobile

project resources),

 and are possibly completed by the resources dedicated to the platform, located in

<project_folder>/DisplayObjects/platforms/<platform_object_name>

(with <project_folder> the root folder of your mobile project resources, and with

<platform_object_name> the resources folder named after your mobile platform

object name).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 161

Chapter "Convertigo Objects"
Mobile Application
WINDOWS PHONE 7

OBJECT DESCRIPTION

Windows Phone 7 mobile platform

Windows Phone 7 mobile platform allows creating a Windows Phone 7 application from the

Mobile application below which it is added.

The mobile application dedicated to the platform is built from:

 the common resources of the Mobile application, located in <project_folder>/

DisplayObjects/mobile (with <project_folder> the root folder of your mobile

project resources),

 and are possibly completed by the resources dedicated to the platform, located in

<project_folder>/DisplayObjects/platforms/<platform_object_name>

(with <project_folder> the root folder of your mobile project resources, and with

<platform_object_name> the resources folder named after your mobile platform

object name).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Windows Phone
publisher ID title

String expert Defines Windows Phone publisher ID title to use
for building the Windows Phone 7 application
from this application.
When building a mobile application for Windows
Phone platform, a Window Phone publisher ID
(including its title) is mandatory. Convertigo
provides one by default, this Window Phone
publisher ID is used by default in Convertigo
engine.
This default Window Phone publisher ID can be
configured at engine level, in the Mobile builder
tab of the Administration Console's Configuration
page. This engine level Window Phone publisher
ID will be used by default for all Windows Phone
dedicated applications built by the Convertigo.
The Window Phone publisher ID title property
allows to override the Window Phone publisher
ID title for this mobile application's build. If left
empty, the common Window Phone publisher ID
title defined at Convertigo engine level is used.
Note: The Windows Phone publisher ID is linked
to a PhoneGap build account. If a Mobile builder
authentication token is configured in the Mobile
application or at Convertigo engine level, the
Windows Phone publisher ID (defined here or at
Convertigo engine level) must be one of the
"Signing keys" declared in this PhoneGap build
account.
2 - 162 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Mobile Application
WINDOWS PHONE 8

OBJECT DESCRIPTION

Windows Phone 8 mobile platform

Windows Phone 8 mobile platform allows creating a Windows Phone 8 application from the

Mobile application below which it is added.

The mobile application dedicated to the platform is built from:

 the common resources of the Mobile application, located in <project_folder>/

DisplayObjects/mobile (with <project_folder> the root folder of your mobile

project resources),

 and are possibly completed by the resources dedicated to the platform, located in

<project_folder>/DisplayObjects/platforms/<platform_object_name>

(with <project_folder> the root folder of your mobile project resources, and with

<platform_object_name> the resources folder named after your mobile platform

object name).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Windows Phone
publisher ID title

String expert Defines Windows Phone publisher ID title to use
for building the Windows Phone 8 application
from this application.
When building a mobile application for Windows
Phone platform, a Window Phone publisher ID
(including its title) is mandatory. Convertigo
provides one by default, this Window Phone
publisher ID is used by default in Convertigo
engine.
This default Window Phone publisher ID can be
configured at engine level, in the Mobile builder
tab of the Administration Console's Configuration
page. This engine level Window Phone publisher
ID will be used by default for all Windows Phone
dedicated applications built by the Convertigo.
The Window Phone publisher ID title property
allows to override the Window Phone publisher
ID title for this mobile application's build. If left
empty, the common Window Phone publisher ID
title defined at Convertigo engine level is used.
Note: The Windows Phone publisher ID is linked
to a PhoneGap build account. If a Mobile builder
authentication token is configured in the Mobile
application or at Convertigo engine level, the
Windows Phone publisher ID (defined here or at
Convertigo engine level) must be one of the
"Signing keys" declared in this PhoneGap build
account.
2 - 163

Chapter "Convertigo Objects"
Sequencer
2.3 Sequencer
2 - 164 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
2.3.1 Main objects
2 - 165

Chapter "Convertigo Objects"
Sequencer
GENERIC SEQUENCE

OBJECT DESCRIPTION

Defines and orchestrates a series of actions.

A Sequence defines actions (called Steps), the order in which they are executed and

conditions of execution. It follows a logical process meant at achieving a specific goal.

A Sequence can be set as part of the project containing transactions to be orchestrated or as

part of any other project. For example, a sequencer project can contain Sequences

orchestrating exclusively transactions from other projects.

Any Sequence can be triggered as a web service in SOAP or REST protocol. It can return XML

data combined from the orchestrated transactions and other steps to the web service caller.

Any XML output structure can be defined using appropriate steps.

"Blind" Sequences are also possible - they do not return any data to the caller, but can for

example insert data in databases using a defined SQL connector, or insert data into forms

(thanks to HTML transaction for example).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Accessibility Accessibility standard Defines the transaction/sequence accessibility.
This property can take the following values:
• Public: The transaction/sequence is

runnable from everyone and everywhere,
visible in the Test Platform and is also
exposed in the SOAP WSDL as a web
service method.

• Hidden: The transaction/sequence is
runnable but only from people who know the
execution URL, not visible in the Test
Platform nor exposed in the SOAP WSDL.

• Private: The transaction/sequence is only
runnable from within the Convertigo engine
(Call Transaction/(Call Sequence steps), is
not visible in the Test Platform and cannot be
requested as SOAP web service method.
This value is used for tests, unfinished
transactions/sequences or functionalities not
to be exposed. Private transactions/
sequences remain runnable in the Studio, for
the developer to be able to test its
developments.

Note: In the Test Platform:
• The administrator user (authenticated in

Administration Console or Test Platform) can
see and run all transactions / sequences, no
matter what their accessibility is.

• The test user (authenticated in the Test
Platform or in case of anonymous access)
can see and run public transactions/
sequences and run hidden ones if he knows
their execution URL.
2 - 166 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Add statistics to
response

boolean expert Defines whether some statistics of execution of
the transaction/sequence should be added as
data in the transaction/sequence's response.
If this property is set to true, the transaction/
sequence response will be enhanced with the
statistics data of its execution (total time for the
request, time spent waiting for the mainframe,
etc.).
Note: This property has nothing to do with the
general property of the Convertigo engine Insert
statistics in the generated document that can
be edited in the Configuration page of the
Administration Console.

Authenticated context
required

boolean expert Defines whether an authenticated context is
required to execute the transaction/sequence.
If this property is set to true, the context of
execution of the transaction/sequence must have
been authenticated. Otherwise, the transaction/
sequence is not executed. Default value is
false for a standard access to transactions/
sequences.
Notes:
• When a context is authenticated, all the

contexts in the same HTTP session are also
authenticated. For more information about
context and HTTP session, see Context
general presentation paragraph in JavaScript
Objects APIs chapter.

• When executing a transaction/sequence from
stub (__stub variable passed to true in
entry), this property is ignored. Indeed,
executing from stub is for testing purposes
and should not require any authentication:
the context would never be authenticated as
the transaction/sequence setting the context
as authenticated could also be executed from
stub.

Authenticated user as
cache key

boolean expert Defines whether the authenticated user should
be used as cache key.
When the cache is enabled (Response lifetime
setting filled with a time-to-live), the
Authenticated user as cache key property
allows to specify to use the authenticated user ID
from context/session as an additional key to the
cache.
It would have as effect that two different identified
users cannot retrieve the cached response of the
other for the same request. Default value is
false: the authenticated user is not used as
cache key.

Call the biller boolean expert Defines whether the billing management module
should be called for each generated XML
document.
If this property is set to true, the applicable
billing management module, defined thanks to
the connector's billing class name property, is
invoqued. This parameter should never be
changed (Convertigo private use only).

Character set String expert Defines the character set used for operations on
the generated XML document (default: UTF-8).

Property Type Category Description
2 - 167

Chapter "Convertigo Objects"
Sequencer
Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Include response
element

boolean expert Defines whether the response element should be
included in web service result or whether the data
should be directly under the public method
response node (i.e. allows to remove the
encompassing 'response' node or not)

Response client
cache

boolean expert Defines whether the transaction/sequence
response should be cached by the client.
If set to false, the response XML is sent to the
client along with HTTP headers forcing the client
browser not to store it in its local cache. This is
the default value, since dynamic responses are
usually preferred. If set to true, the XML
response is sent normally.

Property Type Category Description
2 - 168 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Response lifetime String expert Defines the response time-to-live (in seconds) in
cache, i.e. the time during which the cached
response remains valid or time interval for its
renewal. This property enables the cache when
filled, disables the cache when left empty.
The Response lifetime property allows to
specify the cache settings for the transaction/
sequence's response. It can be set to the
following values:
• <empty>: Disables the cache for the

transaction/sequence. The response will not
be cached and each request will execute the
complete transaction. It is the default value.

• absolute,<time in secs>: Enables the
cache for the transaction/sequence. The
response will be cached for the time specified
in seconds. If an other request with the same
parameters occurs within this time, the
response will be returned from the cache.

• daily,hh:mm:ss: Enables the cache for
the transaction/sequence. The response will
be cached until hh:mm:ss of the current day
is reached. If an other request with the same
parameters occurs before this time, the
response will be returned from the cache. A
new day starts at 00:00:00.

• weekly,hh:mm:ss,w: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the wth
day of week is reached. For Sunday w = 1,
for Monday w = 2 ... and for Saturday w = 7. If
an other request with the same parameters
occurs before this time, the response will be
returned from the cache. A new day starts
at 00:00:00.

• monthly,hh:mm:ss,d: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the dth
day of month is reached. If an other request
with the same parameters occurs before this
time, the response will be returned from the
cache. A new day starts at 00:00:00.

Notes:
• The Response lifetime property editor

proposes a Generator tool that can help you
configure the Response lifetime setting.

• The Variable objects contain the Cache key
property that allows to specify to use this
variable as a key to the cache or not. See
Variable objects documentation for more
information.

Response timeout long standard Defines the response maximum waiting time (in
seconds).
Maximum time (in seconds) for a transaction/
sequence to run. When specified time is reached,
the transaction/sequence ends and returns a
timeout error. If requested through the SOAP
interface, the error is returned as a SOAP
exception.

Property Type Category Description
2 - 169

Chapter "Convertigo Objects"
Sequencer
EXAMPLES

Example 1

Let’s consider the sample_documentation_CWI project set in the context of the "Starting

with Convertigo Web Integrator" tutorial. It includes a transaction called

searchGoogleWithLimit:

 Figure 2 - 121: Generic Sequence - Project with existing transaction

In this example, we want to define a Generic Sequence, in a new project named

sample_refManual_steps, orchestrating several calls to the searchGoogleWithLimit

transaction.

Secure connection
required

boolean expert Defines whether the transaction/sequence
should be called through a secured connection
(e.g. HTTPS).
Depending on the requester, if this property is set
to true, the transaction/sequence must be
accessed through a secure connection (e.g.
HTTPS in case of HTTP access). Default value is
false for a standard access to transactions/
sequences.

Style sheet int standard Defines how the XML returned by the sequence
has to be processed by XSLT.
This property can take the following values:
• None: Do not process with XSLT. Usual

setting for web services (SOAP or REST)
where plain XML data is to be returned.

• From sequence: Use the XSL style sheet
attached to the sequence. When used, make
sure a style sheet is added to the sequence.

Property Type Category Description
2 - 170 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
A Generic Sequence object is created with the following properties:

Generic Sequence [

accessibility=hidden

response timeout=360

style sheet=none

]

The Generic Sequence object is created in the Sequences folder of a new project and appears

as follows in the Projects view:

 Figure 2 - 122: Generic Sequence - Sequence object created in Projects view

Its parameters are edited in the Properties view of the Convertigo Studio:

You can find the complete example projects in the Studio. To open these
projects, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Sequencer objects examples in the
New Project wizard.
Associated project can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Web integration in the New
Project wizard.
2 - 171

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 123: Generic Sequence - Configuration example

The Response timeout property is set to "360" for the Generic Sequence to have the time to

orchestrate several calls to the searchGoogle transaction, which Reponse timeout property

is set to "60".

To complete the Generic Sequence, Request variables have to be added as well as Steps

defining the actions to orchestrate. See "Request single-valued variable" and "Request multi-

valued variable" documentations and example as well as "Iterator step" and "Transaction step"

documentations and examples.

Example 2

The sample_documentation_CMS project set in the context of the "Starting with Convertigo

Mashup Sequencer" tutorial includes two sequences, each of them illustrating one of the two

main purposes of CMS sequences:

 the first sequence, GetXMLData, is meant at orchestrating transactions so as to collect

data, arrange ("mix" as required by the user) collected data and produce an arranged XML

output,

 the second sequence, InsertDataInBase, is meant at orchestrating transactions so as

to collect data, arrange ("mix" as required by the user) collected data, insert them into

database tables and produce a check XML output, that is to say XML data informing the

user about possible errors returned by SQL transactions.
2 - 172 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Both sequences are made up of a Generic Sequence, of steps and are associated with a

sequence variable (in this example, the sequence variable matches the variable of the first

called transaction).

The GetXMLData sequence appears as follows in the Projects view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Mashup Sequencer" tutorial or the procedure “Opening a sample project
from the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Mashup sequencing in the New Project
wizard.
Associated projects can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Legacy integration and
Web integration in the New Project wizard.
2 - 173

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 124: Generic Sequence - GetXMLData sequence in Projects view

The InsertDataInBase sequence appears as follows in the Projects view of the Convertigo

Studio:
2 - 174 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 125: Generic Sequence - InsertDataInBase sequence in Projects view

Both sequences are set with similar property values. These appear as follows in the

Properties view of the Convertigo Studio:
2 - 175

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 126: Generic Sequence - GetXMLData sequence configuration example
2 - 176 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
2.3.2 Steps
2 - 177

Chapter "Convertigo Objects"
Sequencer
FLOW CONTROL STEPS
2 - 178 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
JIF

OBJECT DESCRIPTION

Defines an IF conditional step based on a JavaScript condition.

The jIf step is one of Convertigo Sequencer conditional steps. This step is based on a

JavaScript condition and contains other steps executed only if the condition is fulfilled.

The condition, defined in the Condition property, is a JavaScript expression that is evaluated

during the sequence execution as true or false. If the condition is considered true, then

steps under the parent jIf step are executed. If the condition is considered false, the steps

under the parent jIf step are not executed.

Note: In Convertigo Studio, when an jIf step is created in a sequence, it can be easily replaced

by an jIfThenElse, using the right-click menu on the step and choosing the option Change to

> jIfThenElse. The Condition property remains the same and the steps present in the jIf are

moved to the Then sub-step.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Condition JS expression standard Defines the block condition expression.
This property is a JavaScript expression that will
be evaluated as condition (true or false) in
order to decide whether to execute or not the
child steps.
JavaScript variables and code are supported in
this property.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 179

Chapter "Convertigo Objects"
Sequencer
JIFTHENELSE

OBJECT DESCRIPTION

Defines an IF...THEN...ELSE... conditional step based on a JavaScript condition.

The jIfThenElse step is one of the Convertigo Sequencer conditional steps. This step is based

on a JavaScript condition and contains two child steps (Then and Else) which are executed

depending on the condition fulfillment:

 Then step and child steps are executed when the condition is verified,

 Else step and child steps are executed when the condition is not verified.

The condition, defined in the Condition property, is a JavaScript expression that is evaluated

during the sequence execution as true or false.

Note: In Convertigo Studio, when an jIfThenElse step is created in a sequence, it can be easily

replaced by an jIf, using the right-click menu on the step and choosing the option Change to

> jIf. The Condition property remains the same and the steps present in the sub-steps are:

 steps present in the Then step are moved to the jIf,

 steps present in the Else step are deleted.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Condition JS expression standard Defines the block condition expression.
This property is a JavaScript expression that will
be evaluated as condition (true or false) in
order to decide whether to execute or not the
child steps.
JavaScript variables and code are supported in
this property.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 180 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
IFEXIST

OBJECT DESCRIPTION

Defines an IF conditional step looking for node(s) on a source.

The IfExist step is one of Convertigo Sequencer conditional steps. This step contains other

steps executed only if the source defined through the Source property exists.

Note: In Convertigo Studio, when an IfExist step is created in a sequence, it can be easily

replaced by an IfExistThenElse, using the right-click menu on the step and choosing the option

Change to > IfExistThenElse. The Source property remains the same and the steps present

in the IfExist are moved to the Then sub-step.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the GetXMLData sequence set in the context of the "Starting with Convertigo

Mashup Sequencer" tutorial.

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source XMLVector expert Defines the source to work on.
This property allows defining a list of nodes from
a previous step on which current step performs
tests.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the step has no data to work on: the test
fails.
2 - 181

Chapter "Convertigo Objects"
Sequencer
This sequence contains an IfExist step called IfArticlesTableExists which purpose is to

check if the articles XML table exists in the XML output of the previously called

GetArticleData transaction. If so, a Complex step is executed and generates an

articlesList XML element serving as source for further steps. If not, the sequence ends

because no other step is defined after the IfExist step.

The IfArticlesTableExists step appears as follows:

 in the Projects view of the Convertigo Studio:

 Figure 2 - 127: IfExist step - IfArticlesTableExists step in GetXMLData sequence

 in the Properties view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Mashup Sequencer" tutorial or the procedure “Opening a sample project
from the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Mashup sequencing in the New Project
wizard.
Associated projects can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Legacy integration and
Web integration in the New Project wizard.
2 - 182 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 128: IfExist step - IfArticlesTableExists step properties

The Ouput property is set to false because no XML output is needed from the IfExist step.

Only XML elements generated by the child steps (Complex step and others) are needed in the

sequence XML output. The Source property points towards the articles node in the

GetArticleData transaction XML schema retrieved by the

Call_Transaction_GetArticleData step:
2 - 183

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 129: IfExist step - IfArticlesTableExists step source
2 - 184 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
IFEXISTTHENELSE

OBJECT DESCRIPTION

Defines an IF...THEN...ELSE... conditional step looking for node(s) on a source.

The IfExistThenElse step is one of Convertigo Sequencer conditional steps. This step contains

two child steps (Then and Else) which are executed depending on whether the source defined

through the Source property exists or not:

 Then step and child steps are executed when the specified source exists.

 Else step and child steps are executed when the specified source does not exist.

Note: In Convertigo Studio, when an IfExistThenElse step is created in a sequence, it can be

easily replaced by an IfExist, using the right-click menu on the step and choosing the option

Change to > IfExist. The Source property remains the same and the steps present in the sub-

steps are:

 steps present in the Then step are moved to the IfExist,

 steps present in the Else step are deleted.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source XMLVector expert Defines the source to work on.
This property allows defining a list of nodes from
a previous step on which current step performs
tests.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the step has no data to work on: the test
fails.
2 - 185

Chapter "Convertigo Objects"
Sequencer
EXAMPLES

Let’s consider the GetXMLData sequence set in the context of the "Starting with Convertigo

Mashup Sequencer" tutorial.

This sequence contains an IfExistThenElse step called IfArticleExists which purpose is

to check if a number of XML elements (article_status, article_rsp, product_group)

exist in the XML output of the previously called GetArticleData transaction. Then, if at least

one of the sourced elements exists, a Complex step is executed and an articleFound XML

element is generated. Else, a Complex step is executed and an articleNotFound XML

element is generated.

The IfArticleExists step appears as follows:

 in the Projects view of the Convertigo Studio:

 Figure 2 - 130: IfExistThenElse step - IfArticleExists step in GetXMLData sequence

 in the Properties view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Mashup Sequencer" tutorial or the procedure “Opening a sample project
from the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Mashup sequencing in the New Project
wizard.
Associated projects can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Legacy integration and
Web integration in the New Project wizard.
2 - 186 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 131: IfExistThenElse step - IfArticleExists step properties

The Ouput property is set to false because no XML output is needed from the

IfExistThenElse step. Only XML elements generated by the child steps (Then and Else) are

needed in the sequence XML output. The Source property points towards the nodes, in the

GetArticleData transaction XML schema retrieved by the

Call_Transaction_GetArticleData step, serving as basis for the IfArticleExists

step "if" condition (i.e, "If the article_status tag OR the article_rsp tag OR

product_group tag exist"):

 Figure 2 - 132: IfExistThenElse step - IfArticleExists step sources
2 - 187

Chapter "Convertigo Objects"
Sequencer
2 - 188 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
IFISIN

OBJECT DESCRIPTION

Defines an IF conditional step looking for matches on a source.

The IfIsIn step is one of Convertigo Sequencer conditional steps. This step is based on a

source and one or more regular expression(s) called "Tests". Child steps are executed only if

the specified source exists and if tests match on that specified source.

Note: In Convertigo Studio, when an IfIsIn step is created in a sequence, it can be easily

replaced by an IfIsInThenElse, using the right-click menu on the step and choosing the option

Change to > IfIsInThenElse. The Source and Tests properties remain the same and the

steps present in the IfIsIn are moved to the Then sub-step.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source XMLVector expert Defines the source to work on.
This property allows defining a list of nodes from
a previous step on which current step performs
tests.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the step has no data to work on: the test
fails.
2 - 189

Chapter "Convertigo Objects"
Sequencer
Tests XMLVector expert Defines match tests as regular expressions.
This property allows to define a list of tests that
are applied on the source result.
For each test, two elements have to be set:
• Operator: value to choose between AND and

NOT, the operator value is applied on the
regular expression result to keep it (AND) or
to inverse it (NOT).

• Regular exp: defines a regular expression to
apply (inverted or not thanks to operator
value) on the source result.

Notes:
• A new test can be added to the list using the

blue keyboard icon. The tests defined in the
list can be ordered using the arrow up and
arrow down buttons, or deleted using the red
cross icon.

• In order to be able to test the regular
expressions on the source result, the defined
source has to select a text node.

• For more information about regular
expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 190 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
IFISINTHENELSE

OBJECT DESCRIPTION

Defines an IF...THEN...ELSE... conditional step looking for matches on a source.

The IfIsInThenElse step is one of the Convertigo Sequencer conditional steps. This step is

based on a source and one or more regular expression(s) called "Tests". This step contains

two child steps (Then and Else) which are executed depending on whether the specified

source exists and if tests match on that specified source or not:

 Then step and child steps are executed when specified source exists and tests match on

source,

 Else step and child steps are executed when specified source exists and tests do not

match on source or when specified source does not exist.

Note: In Convertigo Studio, when an IfIsInThenElse step is created in a sequence, it can be

easily replaced by an IfIsIn, using the right-click menu on the step and choosing the option

Change to > IfIsIn. The Source and Tests properties remain the same and the steps present

in the sub-steps are:

 steps present in the Then step are moved to the IfIsIn,

 steps present in the Else step are deleted.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 191

Chapter "Convertigo Objects"
Sequencer
Source XMLVector expert Defines the source to work on.
This property allows defining a list of nodes from
a previous step on which current step performs
tests.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the step has no data to work on: the test
fails.

Tests XMLVector expert Defines match tests as regular expressions.
This property allows to define a list of tests that
are applied on the source result.
For each test, two elements have to be set:
• Operator: value to choose between AND and

NOT, the operator value is applied on the
regular expression result to keep it (AND) or
to inverse it (NOT).

• Regular exp: defines a regular expression to
apply (inverted or not thanks to operator
value) on the source result.

Notes:
• A new test can be added to the list using the

blue keyboard icon. The tests defined in the
list can be ordered using the arrow up and
arrow down buttons, or deleted using the red
cross icon.

• In order to be able to test the regular
expressions on the source result, the defined
source has to select a text node.

• For more information about regular
expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 192 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
JWHILE

OBJECT DESCRIPTION

Defines a WHILE loop step based on a JavaScript condition.

This step executes a group of child steps as the condition expression set in the Condition

property remains true.

Note: You can add other steps to this step: these are the steps executed in the loop.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Condition JS expression standard Defines the block condition expression.
This property is a JavaScript expression that will
be evaluated as condition (true or false) in
order to decide whether to execute or not the
child steps.
JavaScript variables and code are supported in
this property.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 193

Chapter "Convertigo Objects"
Sequencer
JDOWHILE

OBJECT DESCRIPTION

Defines a DO...WHILE loop step based on a JavaScript condition.

This step executes a group of child steps once, then repeats execution of the loop until the

condition expression set in the Condition property is found to be false.

Note: You can add other steps to this step: these are the steps executed in the loop.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Condition JS expression standard Defines the block condition expression.
This property is a JavaScript expression that will
be evaluated as condition (true or false) in
order to decide whether to execute or not the
child steps.
JavaScript variables and code are supported in
this property.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 194 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
ITERATOR

OBJECT DESCRIPTION

Defines a loop step iterating on XML nodes result from a source.

Also called For Each step, the Iterator step:

 defines a source as input list to work on, i.e. a list of nodes from a previous step, used as a

recurring element (for example table rows),

 iterates on each element of the specified source,

 contains child steps that are executed on each iteration, as other loop steps (for example,

see "jIterator", "jWhile" and "jDoWhile" steps documentation and examples).

In the iteration, child steps can access and use the current iterated element:

 using a source pointing on the Iterator step itself,

 using the JavaScript variable named item, which is a Java Node object (item of the

NodeList resulting from the input source).

They also can access the current iteration index using the JavaScript variable named index

updated on each iteration, which is an integer.

Note: The current item value can be accessed using the following code statement:

 item.getTextContent() if the Node is of Text or Attribute type,

 item.getNodeValue() if the Node is of Element type.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Max. iterations JS expression standard Defines the maximum number of iterations.
Intended mostly for testing purposes, this
(optional) parameter limits the number of times
the iterator loops.
This property is a JavaScript expression that is
evaluated during the sequence execution. By
default, it is not filled, so the Iterator loops on
each node from the source.
2 - 195

Chapter "Convertigo Objects"
Sequencer
EXAMPLES

Let’s consider the GetXMLData sequence set in the context of the "Starting with Convertigo

Mashup Sequencer" tutorial.

This sequence contains an Iterator step called IteratorOnEachRow which purpose is to:

 iterate on each row of the articles table generated by the GetArticleData

transaction,

 execute child steps on each of these rows.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source XMLVector expert Defines the source list to iterate on.
This property allows defining a list of nodes from
a previous step on which current step works.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the step has no data to work on: the loop
does not execute its child steps and the parent
sequence execution continues.

Starting index JS expression standard Defines the index from which the Iterator should
start to iterate.
In the case you do not want to start an iteration at
the first item (index 0), you can specify a starting
index in this property.
This property is a JavaScript expression that is
evaluated during the sequence execution. By
default, it is set to 0 for starting at the first item of
the source list.
If the defined starting index does not exist in the
source list, the loop does not execute its child
steps and the parent sequence execution
continues.

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Mashup Sequencer" tutorial or the procedure “Opening a sample project
from the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Mashup sequencing in the New Project
wizard.
Associated projects can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Legacy integration and
Web integration in the New Project wizard.

Property Type Category Description
2 - 196 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
The IteratorOnEachRow step appears as follows:

 in the Projects view of the Convertigo Studio:

 Figure 2 - 133: Iterator step - IteratorOnEachRow step in GetXMLData sequence

 in the Properties view of the Convertigo Studio:
2 - 197

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 134: Iterator step - Configuration example

The Ouput property is set to false because no XML output is needed from the Iterator step.

Only XML elements generated for each iteration, i.e. by Iterator step’s child steps (Call

Transation, Complex, Attribute steps, see Figure 2 - 133), are needed in the sequence XML

output.

The Source property points towards the node on which the step is to iterate (an articles

child element called row). This node belongs to the GetArticleData transaction XML

schema retrieved by the Call_Transaction_GetArticleData step:
2 - 198 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 135: Iterator step - Source configuration

When executing the Default_Test_Case test case defined for the sequence, the Iterator

step iterates on each row element from the GetArticleData transaction, calls the

searchGoogleWithLimit transaction passing as input variable the name value of the

iterated row and creates an XML output structure including data from both transactions

execution (the current row and the associated Google search response).
2 - 199

Chapter "Convertigo Objects"
Sequencer
JITERATOR

OBJECT DESCRIPTION

Defines a loop step iterating on list items result from a JavaScript expression.

Also called For Each step, the jIterator step:

 defines a JavaScript expression as input list to work on, i.e. the name of a multi-valued

variable, the name of a defined JavaScript Array, or the name of a NodeList variable

created by a previous jSource step, etc.,

 iterates on each item of the specified input list,

 contains child steps that are executed on each iteration, as other loop steps (for example

see "Iterator", "jWhile" and "jDoWhile" steps documentation and examples).

In the iteration, child steps can access and use:

 the current iterated item through a JavaScript variable named item, which type depends

on the iterated Array or NodeList,

 the current iteration index through a JavaScript variable named index, which is an

integer.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression standard Defines the expression evaluated to give the list
to iterate on.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives a list of items (JavaScript Array or
NodeList).
If the expression doesn't output a list object or if
the expression is left blank, the step has no data
to work on: the loop does not execute its child
steps and the parent sequence execution
continues

Is active boolean standard Defines whether the step is active.

Max. iterations JS expression standard Defines the maximum number of iterations.
Intended mostly for testing purposes, this
(optional) parameter limits the number of times
the iterator loops.
By default, it is not filled, so the jIterator loops on
each item from the list.
2 - 200 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
EXAMPLES

Let’s consider a IterateOnJS sequence, which defines one single-valued variable named

startIndex and one multi-valued variable named table. This sequence iterates on the

elements of the table variable, starting to iterate at the index startIndex, and generates

an XML output out of it.

In order to iterate on the multi-valued variable, which is a JavaScript Array, a jIterator step is

created with the following parameters:

jIterator [

expression: table

startingIndex: startIndex

output=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Starting index JS expression standard Defines the index from which the jIterator should
start to iterate.
In the case you do not want to start an iteration at
the first item (index 0), you can specify a starting
index in this property.
This property is a JavaScript expression that is
evaluated during the sequence execution. By
default, it is set to 0 for starting at the first item of
the input list.
If the defined starting index does not exist in the
input list, the loop does not execute its child steps
and the parent sequence execution continues.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Sequencer objects examples in the
New Project wizard.
Associated project (not mandatory for running this example) can be
opened by selecting Convertigo Samples and Demos >
Documentation samples > Web integration in the New Project wizard.

Property Type Category Description
2 - 201

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 136: jIterator step - Configuration example

The Expression property is set to a JavaScript expression using the variable table, on which

we want to iterate. This variable is set by default to a set of five values on which to iterate.

The Starting index property is set to a JavaScript expression using the variable startIndex,

this variable is set by default to 0.

The step is created in the Steps folder of the sequence, including various other steps used to

implement the sequence behavior described above. It appears as follows in the Projects view:
2 - 202 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 137: jIterator step - Object in Projects view, with sequence and other steps

Run the sequence directly with the default values or run the Test_Case_start_at_2 test

case defined for the sequence. You should see the XML output of the sequence being different

depending on the startIndex variable value. For example, here is the sequence output

result in sequence editor after executing the test case:

 Figure 2 - 138: jIterator step - XML result of the sequence after execution
2 - 203

Chapter "Convertigo Objects"
Sequencer
RETURN (SEQUENCER)

OBJECT DESCRIPTION

Defines a RETURN step.

A Return steps exits the current sequence in which it is positioned.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 204 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
JBREAK

OBJECT DESCRIPTION

Defines a BREAK step.

A jBreak step executes a JavaScript expression and exits the current loop step.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider a SearchOneKeyword sequence, which defines two variables named input

and maxResult. This sequence calls the searchGoogleWithLimit transaction, set in the

context of the "Starting With Convertigo Web Integrator" tutorial, with its input variable as

keyword and a hard-coded maxPages variable value. The sequence then tests whether the

transaction has returned an error message or not. In the first case, it ends by raising an

Exception, in the second case, it iterates on the results list and copies to sequence output the

maxResult first items.

In order to exit the loop when maxResult result items are copied to the sequence’s output, a

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression standard Defines the expression evaluated to give the step
value.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the step's result.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Sequencer objects examples in the
New Project wizard.
Associated project can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Web integration in the New
Project wizard.
2 - 205

Chapter "Convertigo Objects"
Sequencer
jBreak step is created with the following parameters:

jBreak [

expression: <empty>

output=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 139: jBreak step - Configuration example

The Expression property is left empty as no JavaScript code needs to be executed before

exiting the loop.

The step is created in the Steps folder of the sequence, under the loop step and next to various

other steps used to implement the sequence behavior described above. It appears as follows

in the Projects view:
2 - 206 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 140: jBreak step - Object in Projects view, with sequence and other steps

When executing the TestCase1 test case defined for the sequence, with input to

"convertigo" and maxResult to "10", the sequence calls the searchGoogleWithLimit

transaction with input variable passed as keyword and maxPages to fixed value "3". Then,

the result items are copied to the sequence output XML. When arriving at the maxResult

iteration, the sequence copies the item and then exits the loop thanks to the jBreak step.

After execution, the sequence XML output contains the 10 result items that have been copied:
2 - 207

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 141: jBreak step - Resulting XML after executingSearchOneKeyword sequence
2 - 208 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
SERIAL

OBJECT DESCRIPTION

Defines a step executing child steps in series.

All child steps of a Serial step are executed one after another, it is similar to the basic behavior

of step execution when they are positioned just under the parent Generic Sequence.

A Serial step is completed (i.e. the sequence will continue flow execution) when all child steps

have been completed. This means the step following a Serial step starts right after the last child

step is completed.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 209

Chapter "Convertigo Objects"
Sequencer
PARALLEL

OBJECT DESCRIPTION

Defines a step executing child steps in parallel.

A Parallel step executes steps simultaneously in parallel contexts. The maximum number of

contexts is set by the value of the Max. threads property.

Each child step is executed in a dedicated thread. When a child thread is completed, all of its

resources are released. As a consequence, a step defined outside a Parallel step cannot

source any information from it.

To do so, it is recommended that you:

 create a Complex step as a parent of the Parallel step,

 generate information from the Parallel step into the Complex step,

 use the Complex step as a source outside the Parallel step.

A Parallel step is completed (i.e. the sequence will continue flow execution) when all child

threads have been completed. This means the step following a Parallel step starts right after

all child threads have been completed.

Convertigo contexts are created for each child step executed in parallel. These contexts are

automatically named after parent Parallel step properties.

If Call transaction or Call sequence steps are child of a Parallel step, contexts can be named

after their Context property or automatically if this property is not specified.

Every automatically named context will be deleted after the Parallel step execution is

completed. Explicitly named contexts will remain for further transaction or sequence use.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Max. threads JS expression standard Defines the maximum number of simultaneously
processed threads.
If this number is inferior to the number of child
steps to be executed simultaneously, all child
steps cannot start. In this case, Max. thread child
steps start executing. The others wait for threads
to be available.
2 - 210 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Property Type Category Description
2 - 211

Chapter "Convertigo Objects"
Sequencer
IFFILEEXISTS

OBJECT DESCRIPTION

Defines an IF conditional step looking for the existence of a file or a directory.

The IfFileExists step is one of Convertigo Sequencer conditional steps. This step contains

other steps executed only if the file or directory defined through the Source property exists.

Note: In Convertigo Studio, when an IfFileExists step is created in a sequence, it can be easily

replaced by an IfFileExistsThenElse, using the right-click menu on the step and choosing the

option Change to > IfFileExistsThenElse. The Source property remains the same and the

steps present in the IfFileExists are moved to the Then sub-step.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source JS expression standard Defines the path of the file or directory which
existence has to be checked.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the file or directory which
existence has to be checked.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 212 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
IFFILEEXISTSTHENELSE

OBJECT DESCRIPTION

Defines an IF...THEN...ELSE... conditional step looking for the existence of a file or a

directory.

The IfFileExistsThenElse step is one of the Convertigo Sequencer conditional steps. This step

contains two child steps (Then and Else) which are executed depending on whether the file or

directory defined through the Source property exists or not:

 Then step and child steps are executed when the source file or directory exists.

 Else step and child steps are executed when the source file or directory does not exist.

Note: In Convertigo Studio, when an IfFileExistsThenElse step is created in a sequence, it can

be easily replaced by an IfFileExists, using the right-click menu on the step and choosing the

option Change to > IfFileExists. The Source property remains the same and the steps

present in the sub-steps are:

 steps present in the Then step are moved to the IfFileExists,

 steps present in the Else step are deleted.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source JS expression standard Defines the path of the file or directory which
existence has to be checked.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the file or directory which
existence has to be checked.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 213

Chapter "Convertigo Objects"
Sequencer
JAVASCRIPT STEPS
2 - 214 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
SEQUENCE JS

OBJECT DESCRIPTION

Defines a scripting step.

This helpful step allows to handle JavaScript code that will be executed in the sequence scope.

This JavaScript code is able to:

 initialize variables,

 perform complex calculations,

 access the context object to get useful properties such as contextID, httpSession,

isCacheEnabled, lockPooledContext, etc.,

 use some context methods to manipulate the result XML DOM, encode and decode data,

abort sequence, etc.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression standard Defines the expression evaluated to give the step
value.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the step's result.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 215

Chapter "Convertigo Objects"
Sequencer
JSOURCE

OBJECT DESCRIPTION

Defines a step extracting a list of nodes from a source into a variable in JavaScript scope.

The jSource step gets a list of nodes from the source defined in the Source property and sets

a JavaScript variable in the current executed sequence JavaScript scope. This variable

contains a Java NodeList object, i.e. a list of XML nodes get from the source.

The variable is named after the Variable name property value. It exists while the sequence is

running.

If only one node matches, the variable is also a NodeList containing only one Node (index is

0). If no node matches, the variable is finally an empty NodeList, containing no Node

(var_name.getLength() = 0).

Notes:

 The variable contains a list of node elements get from a previously executed step. To

access one (Node) of the list, use the following syntax in a step:

var_name.item(index).

 To access one element's text content (String), use the element.getTextContent()

method, to retrieve the text of the element, or the element.getNodeValue() method,

which result depends on the node type (will extract a text only if the Node is of Text or

Attribute type).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 216 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Source XMLVector expert Defines the source to extract.
This property allows defining a list of nodes from
a previous step that are set in a JavaScript
variable, as described in the main description of
this step.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, depending on the step, the variable is
created:
• as an empty NodeList with no data (for

jSource step),
• null (for jSimpleSource step).

Variable name String standard Defines the name of the JavaScript variable.
If this variable exists in scope, its value is
overridden. If the variable doesn't exist in scope,
it is created.

Property Type Category Description
2 - 217

Chapter "Convertigo Objects"
Sequencer
JSIMPLESOURCE

OBJECT DESCRIPTION

Defines a step extracting a string from a source into a variable in Javascript scope.

The jSimpleSource step gets a single node from the source defined in the Source property and

sets a JavaScript variable in the current executed sequence JavaScript scope. This variable

contains a String.

The variable is named after the Variable name property value. It exists while the sequence is

running.

If no node matches, the variable is null.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source XMLVector expert Defines the source to extract.
This property allows defining a list of nodes from
a previous step that are set in a JavaScript
variable, as described in the main description of
this step.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, depending on the step, the variable is
created:
• as an empty NodeList with no data (for

jSource step),
• null (for jSimpleSource step).

Variable name String standard Defines the name of the JavaScript variable.
If this variable exists in scope, its value is
overridden. If the variable doesn't exist in scope,
it is created.
2 - 218 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
EXAMPLES

Let’s consider a SearchOneKeyword sequence, which defines two variables named input

and maxResult. This sequence calls the searchGoogleWithLimit transaction, set in the

context of the "Starting With Convertigo Web Integrator" tutorial, with its input variable as

keyword and a hard-coded maxPages variable value. The sequence then tests whether the

transaction has returned an error message or not. In the first case, it ends by raising an

Exception, in the second case, it iterates on the results list and copies to sequence output the

maxResult first items.

When an error message is found in the transaction output XML, a jException step is created,

using JavaScript expressions as input values for the exception’s message and details (for

more information about this step, see "jException step" documentation and examples). The

error message from the transaction XML response has to be transferred to a JavaScript

variable in order to be used in the jException step. To do so, a jSimpleSource step is created

with the following parameters:

jSimpleSource [

variable name: errorMessage

source: [

Call_Transaction_GoogleSearch step,

//document/transaction/document/errorMessage

]

output=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Sequencer objects examples in the
New Project wizard.
Associated project can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Web integration in the New
Project wizard.
2 - 219

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 142: jSimpleSource step - Configuration example

The Source property points towards the errorMessage node from the previous Call

Transaction step. This node belongs to the GoogleSearch transaction XML schema retrieved

by the Call_Transaction_GoogleSearch step:

 Figure 2 - 143: jSimpleSource step - Source configuration
2 - 220 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
The step is created in the Steps folder of the sequence, next to various other steps used to

implement the sequence behavior described above. It appears as follows in the Projects view:

 Figure 2 - 144: jSimpleSource step - Object in Projects view, with sequence and other steps

The created variable errorMessage is then used in the jException step to fill the

exception’s details. For more information about this step, see "jException step" documentation

and examples.
2 - 221

Chapter "Convertigo Objects"
Sequencer
JEXCEPTION

OBJECT DESCRIPTION

Raises a Convertigo Engine exception.

In some circumstances, it is necessary to explicitly raise a Convertigo Engine exception. This

is reflected as a SoapFaultException for SOAP web service callers or by an error structure

in XML output for any other caller.

Message and Details properties can be set to complex JavaScript expressions, mixing text

strings and data from variables. These expressions are evaluated during the sequence

execution and build a dynamic message and details output in the raised exception.

The error XML structure contains a type attribute, which value is automatically set to c8o in

case of Exception. It allows to differentiate an irrecoverable Server error from a project/

applicative error created using an Error step (type attribute value is then project).

A jException step breaks the sequence execution flow, the sequence ends just after this step's

execution (contrary to Error step which does not break the execution flow).

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider a SearchOneKeyword sequence, which defines two variables named input

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Details JS expression standard Provides additional details about the triggered
error.
This property allows the developer to dynamically
add some details content in the raised Exception,
depending on the sequence execution.

Is active boolean standard Defines whether the step is active.

Message JS expression standard Provides the (humanly readable) error message.
This property allows the developer to dynamically
define the message text of the raised Exception,
depending on the sequence execution.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 222 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
and maxResult. This sequence calls the searchGoogleWithLimit transaction, set in the

context of the "Starting With Convertigo Web Integrator" Quick Guide, with its input variable

as keyword and a hard-coded maxPages variable value. The sequence then tests whether

the transaction has returned an error message or not. In the first case, it ends by raising an

Exception, in the second case, it iterates on the results list and copies to sequence output the

maxResult first items.

In order to raise the Exception when an error message is found in the transaction output XML,

a jException step is created with the following parameters:

jException [

message: "The Google Search transaction ended with an error."

details: errorMessage

output=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 145: jException step - Configuration example

The Details property is set to a JavaScript expression using a variable named

errorMessage. This variable is previously set in the sequence thanks to a jSimpleSource

step (for more information about this step, see "jSimpleSource step" documentation and

examples). To sum up, the evaluated details message uses the error message retrieved from

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Sequencer objects examples in the
New Project wizard.
Associated project can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Web integration in the New
Project wizard.
2 - 223

Chapter "Convertigo Objects"
Sequencer
the searchGoogleWithLimit transaction.

The step is created in the Steps folder of the sequence, next to various other steps used to

implement the sequence behavior described above. It appears as follows in the Projects view:

 Figure 2 - 146: jException step - Object in Projects view, with sequence and other steps

Run the WrongKeywordTestCase test case defined for the sequence, with input variable

to a value giving no result (you may have to change this value for a no result execution) and

maxResult to "2". The sequence calls the searchGoogleWithLimit transaction with

input variable passed as keyword and maxPages to fixed value "3". Then, the sequence

detects the error message in the transaction output XML and raises an Engine Exception with

the appropriate message and details. It is visible in the Engine log (here through the

Administration Console):
2 - 224 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 147: jException step - Exception message visible in Engine log
2 - 225

Chapter "Convertigo Objects"
Sequencer
XML STEPS
2 - 226 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
ATTRIBUTE (SEQUENCER)

OBJECT DESCRIPTION

Creates an XML attribute node.

The Attribute step adds an attribute node to parent generated XML element in the sequence

XML output.

The XML attribute resulting from this step can be output in the response XML of the sequence

if the Output property is set to true, or used as a source by any other following step.

The attribute is named after the value of the Node name property, its value is set thanks to a

source defined in Source property. If no source is defined or if its results is empty, the XML

attribute contains the value of the Default value property, if a value is defined in this property.

Note:

 An Attribute step can only be added under Element steps, jElement steps and Complex

steps.

 No step can be added under an Attribute step.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Assigned XSD Simple
type QName

XmlQName expert Defines the schema base type to assign as a
type to this simple XML element.
This property allows to assign a simple XSD type
to the simple XML element generated by this
step. It can only be used when the step actually
generates a simple XML element.

Attribute namespace String standard Defines the namespace to use for this attribute.
Leave it blank for no namespace.

Attribute namespace
URI

String standard Defines the URI associated with the namespace.
Leave it blank for no namespace.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default value String standard Defines the default text value of the attribute.
This property allows defining a default value to
use when no source is defined or when the
source result is empty.

Is active boolean standard Defines whether the step is active.
2 - 227

Chapter "Convertigo Objects"
Sequencer
EXAMPLES

Let’s consider the GetXMLData sequence set in the context of the "Starting with Convertigo

Mashup Sequencer" tutorial.

This sequence contains three Attribute steps (article_code, article_code,

article_status) which purpose is to add attributes to the article complex element

generated by the parent Complex step.

The Attribute steps appear as follows:

 in the Projects view of the Convertigo Studio:

Node name String standard Defines the name of the generated XML attribute.
This property can contain any name, no words
are reserved, and must follow the rules on XML
naming:
• it can contain letters, numbers, and other

characters,
• it cannot start with a number,
• it cannot contain spaces nor punctuation

character.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source XMLVector expert Defines the source to use as value.
This property allows defining a node or a list of
nodes from a previous step used by current step
as value.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the step uses the value defined in Default
value property, if a value is defined in this
property. Otherwise, the step creates an empty
attribute.

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Mashup Sequencer" tutorial or the procedure “Opening a sample project
from the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Mashup sequencing in the New Project
wizard.
Associated projects can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Legacy integration and
Web integration in the New Project wizard.

Property Type Category Description
2 - 228 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 148: Attribute step - Article code, name and status in GetXMLData sequence

 in the Properties view of the Convertigo Studio (here, article_code):
2 - 229

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 149: Attribute step - Configuration example

The Output property is set to true because we need attributes to be generated in the

sequence XML output. The name of the generated attribute is given by the value of the Node

name property: article_code.

When executing the Default_Test_Case test case defined for the sequence, the Iterator

step iterates on each row element from the GetArticleData transaction, calls the

searchGoogleWithLimit transaction passing as input variable the name value of the

iterated row and creates the XML output structure including the three defined attributes. These

attributes appear as follows in the resulting sequence XML:
2 - 230 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 150: Attribute step - Attributes generated in GetXmlData sequence XML output
2 - 231

Chapter "Convertigo Objects"
Sequencer
JATTRIBUTE

OBJECT DESCRIPTION

Creates an XML attribute node based on a JavaScript expression.

The jAttribute step adds an attribute node to parent generated XML element in the sequence

XML output.

The XML attribute resulting from this step can be output in the response XML of the sequence

if the Output property is set to true, or used as a source by any other following step.

The attribute is named after the value of the Node name property, its value is set thanks to a

JavaScript expression defined in Expression property. If the JavaScript expression is null, the

XML attribute contains the value of the Default value property.

Notes:

 A jAttribute step can only be added under Element steps, jElement steps and Complex

steps.

 No step can be added under a jAttribute step.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Assigned XSD Simple
type QName

XmlQName expert Defines the schema base type to assign as a
type to this simple XML element.
This property allows to assign a simple XSD type
to the simple XML element generated by this
step. It can only be used when the step actually
generates a simple XML element.

Attribute namespace String standard Defines the namespace to use for this attribute.
Leave it blank for no namespace.

Attribute namespace
URI

String standard Defines the URI associated with the namespace.
Leave it blank for no namespace.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default value String standard Defines the default text value of the node.
This property allows defining a default value to
use when no content is specified thanks to the
Expression property of if this expression returns
null.

Expression JS expression standard Defines the expression evaluated to give the
output text.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the text string to output in the generated
attribute.

Is active boolean standard Defines whether the step is active.
2 - 232 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Node name String standard Defines the name of the generated XML attribute.
This property can contain any name, no words
are reserved, and must follow the rules on XML
naming:
• it can contain letters, numbers, and other

characters,
• it cannot start with a number,
• it cannot contain spaces nor punctuation

character.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Property Type Category Description
2 - 233

Chapter "Convertigo Objects"
Sequencer
COPY

OBJECT DESCRIPTION

Imports a copy of XML elements sourced from a previous step.

The Copy step duplicates and imports a list of nodes from a previously executed step to the

sequence XML output. The XML elements resulting from this step can be used as a source by

another step.

The list of nodes to duplicate is set thanks to a source defined in Source property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source XMLVector expert Defines the source to copy.
This property allows defining a list of nodes from
a previous step that are copied by this step.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the step has no data to work on: nothing is
copied in the sequence output.
2 - 234 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
SORT

OBJECT DESCRIPTION

Sorts XML nodes from a source using a sort key defined by an XPath.

The Sort step works as follows:

 It defines an input list to work on using a source, i.e. a list of nodes to be sorted from a

previous step.

 It applies a common XPath on each item of the list to define a sort key for this node. The

XPath is defined in the Sort key XPath property. The result of this XPath applied on each

item of the list is the sort key. This sort key is the value that can actually be sorted (by

number, by alphabetical order, etc.) and used to sort the matching nodes.

 It uses the sort keys to sort the nodes of the list, using options defined in other properties

(Sort order, Sort type and Sort options).

 It finally outputs the sorted nodes, so they can be used as source by a following step or

output by the Sequence.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Sort key XPath String expert The XPath that is applied on each node of the list
to define its sort key.
This property allows to define the XPath that will
be applied on each node of the source list to give
the sort key of the node. The sort key of each
node of the list is then used for sorting the list:
each node is represented by its sort key during
the sort algorithm.
2 - 235

Chapter "Convertigo Objects"
Sequencer
Sort option JS expression expert Defines some options to sort the sort key,
depending on their type.
Depending on the Sort type property value, this
property contains options that are needed to
make the comparison. For Date sort type (sort
keys of date type), this property must contain the
sort keys date format. For more information on
usable symbols, see Appendix "Date format -
Usable symbols".

Sort order Order expert Defines the sorting order.
This property allows to define the sorting order. It
can take the following values:
• Ascending: the sort is performed by

ascending order,
• Descending: the sort is performed by

descending order.

Sort type TypeOrder expert Defines on which data type the sort is performed.
This property allows to define on which data type
the sort is performed. It can take the following
values:
• String: the sort keys are of string type, the

sort is performed by alphabetical order,
• Number: the sort keys are of number type,

the sort is performed by numerical order,
• Date: the sort keys are of date type, the sort

is performed chronologically, using the Sort
option property to define the date format.

Source XMLVector expert Defines the list of nodes to sort using a source.
This property allows defining a list of nodes from
a previous step on which current step works, i.e.
the items to sort.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the step has no data to work on: the list of
objects to sort is empty, nothing is sorted and the
parent sequence execution continues.

Property Type Category Description
2 - 236 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
COMPLEX

OBJECT DESCRIPTION

Defines an empty XML element (with no text content).

The Complex step generates an output XML tag and can contain other steps generating XML

(for example: Element, Attribute or Complex steps) in order to create any XML structure.

This structure can be output in the response XML of the sequence if the Output property is set

to true, or used as a source by any other following step.

Note: Child steps have to be added under this step to create a data structure.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Assigned XSD
Complex type
QName

XmlQName expert Defines a global schema Complex type to assign
as a type to this structured XML element.
This property allows to assign an XSD Complex
type to the structured XML element generated by
this step.
The QName defined by this property can be:
• a new Complex type name: the Complex type

will be created from this structure in the
project's schema,

• an already defined Complex type name: the
existing Complex type is used and possibly
enhanced by the structure generated by this
XML element (if not identical): the Complex
type will be a union of all XML structures
using it.

To use an already existing Complex type name,
the popup editor displays all types available in
the project's schema:
• in grey: all non editable schema types

(Convertigo standard error schema, types
imported through references, types of
transactions, etc.),

• in blue: all schema types dynamically
generated from the project's sequences,

• in green: all dynamic schema types explicitly
named by Assigned XSD Complex type
QName or Assigned XSD Element ref
QName properties.
2 - 237

Chapter "Convertigo Objects"
Sequencer
EXAMPLES

Let’s consider the GetXMLData sequence set in the context of the "Starting With Convertigo

Assigned XSD
Element ref QName

XmlQName expert Defines a global schema Element to assign as a
reference to this structured XML element.
This property allows to assign a referenced
Element to the structured XML element
generated by this step. The referenced Element
and its corresponding XSD Complex type will
also be created if non existing in the project's
schema.
The QName defined by this property can be:
• a new referenced Element name: the

referenced Element and the corresponding
Complex type will be created from this
structure in the project's schema,

• an already defined referenced Element
name: the existing referenced Element is
used and its Complex type is possibly
enhanced by the structure generated by this
XML element (if not identical): the Complex
type will be a union of all XML structures
using it.

To use an already existing referenced Element
name, the popup editor displays all types
available in the project's schema:
• in grey: all non editable schema types

(Convertigo standard error schema, types
imported through references, types of
transactions, etc.),

• in blue: all schema types dynamically
generated from the project's sequences,

• in green: all dynamic schema types explicitly
named by Assigned XSD Complex type
QName or Assigned XSD Element ref
QName properties.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Node name String standard Defines the tag name of the generated XML
element.
This property can contain any name, no words
are reserved, and must follow the rules on XML
naming:
• it can contain letters, numbers, and other

characters,
• it cannot start with a number,
• it cannot contain spaces nor punctuation

character.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Property Type Category Description
2 - 238 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Mashup Sequencer" tutorial.

This sequence contains three Complex steps called articleFound, articlesList and

article which purpose is to produce XML complex elements used to structure as required

the XML output. As a result, the whole GetXMLData sequence XML output is made up of

complex elements.

The three above-mentioned complex elements appear as follows in the Projects view of the

Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Mashup Sequencer" tutorial or the procedure “Opening a sample project
from the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Mashup sequencing in the New Project
wizard.
Associated projects can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Legacy integration and
Web integration in the New Project wizard.
2 - 239

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 151: Complex step - GetXMLData sequence complex elements

Once executed, the sequence produces an XML output made up of complex elements:
2 - 240 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 152: Complex step - GetXMLData sequence XML output

The articleFound Complex step appears as follows in the Properties view:

f

 Figure 2 - 153: Complex step - Configuration example

The Output property is set to true, indicating that the step generates XML content in the

sequence output XML. The generated tag name (articleFound, see Figure 2 - 152) is

defined through the Node name property.
2 - 241

Chapter "Convertigo Objects"
Sequencer
2 - 242 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
ERROR STRUCTURE

OBJECT DESCRIPTION

Creates an XML structure describing an applicative error.

The Error structure step generates an output XML structure corresponding to an applicative

error. This structure is created on a standard basis (error code, message, details) that is

automatically managed by client applications developed with Convertigo Mobilizer and/or

using the Convertigo Templating Framework.

The basic error structure elements are filled using the step's corresponding properties: Code,

Message and Details. The structure can be enhanced with user-defined elements: to do so,

simply add child steps under this Error structure step (the same way as for a Complex step).

This error structure contains a type attribute, which value is automatically set to project. It

allows to differentiate a project/applicative error from an irrecoverable Server error (type

attribute value is then c8o).

The error structure can be output in the response XML of the sequence if the Output property

is set to true, or used as a source by any other following step.

An Error structure step does not break the sequence execution flow (contrary to jException

step for example). Use the Break or Return steps when you need to stop the sequence

execution flow after an Error structure step.

OBJECT PROPERTIES

The table below describes the object properties:
2 - 243

Chapter "Convertigo Objects"
Sequencer
Property Type Category Description

Code SmartType standard A numeric error code to fill in error structure,
identifying the error.
This property is a "smart type" property, that
allows to specify the error code.
A "smart type" property can be of one of the
following types:
• a text: the value is therefore a hard-coded

text value,
• a JavaScript expression: the value is

therefore a JavaScript expression that is
evaluated at sequence execution,

• a source: the value is a source and can be
picked using the source picker. A source is
defined as a reference on a step previously
existing in the parent sequence, associated
with an XPath applied on the step's result
DOM. At runtime, the XPath is applied on the
step's current execution result XML and
extracts a list of XML nodes resulting from
this execution.

Notes:
• If you use the source type for this property,

the XPath application on target XML should
give a text result. Otherwise, the first node's
text content is taken.

• If no error message text is defined by the
Message property, the client project error
dictionary can be used, if using the
Internationalization framework, to retrieve the
error message corresponding to this error
code.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Details SmartType standard Some technical information details about the
error, to fill in error structure, mainly for
debugging purposes.
This property is a "smart type" property, that
allows to specify the error details.
A "smart type" property can be of one of the
following types:
• a text: the value is therefore a hard-coded

text value,
• a JavaScript expression: the value is

therefore a JavaScript expression that is
evaluated at sequence execution,

• a source: the value is a source and can be
picked using the source picker. A source is
defined as a reference on a step previously
existing in the parent sequence, associated
with an XPath applied on the step's result
DOM. At runtime, the XPath is applied on the
step's current execution result XML and
extracts a list of XML nodes resulting from
this execution.

Note: If you use the source type for this property,
the XPath application on target XML should give
a text result. Otherwise, the first node's text
content is taken.

Is active boolean standard Defines whether the step is active.
2 - 244 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Message SmartType standard An optional text message to fill in error structure,
explaining the error.
This property is a "smart type" property, that
allows to specify the error message.
A "smart type" property can be of one of the
following types:
• a text: the value is therefore a hard-coded

text value,
• a JavaScript expression: the value is

therefore a JavaScript expression that is
evaluated at sequence execution,

• a source: the value is a source and can be
picked using the source picker. A source is
defined as a reference on a step previously
existing in the parent sequence, associated
with an XPath applied on the step's result
DOM. At runtime, the XPath is applied on the
step's current execution result XML and
extracts a list of XML nodes resulting from
this execution.

Notes:
• If you use the source type for this property,

the XPath application on target XML should
give a text result. Otherwise, the first node's
text content is taken.

• If this error message text is not present in
output, the client project error dictionary can
be used, if using the Internationalization
framework, to retrieve the error message
corresponding to the error code defined by
the Code property.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Property Type Category Description
2 - 245

Chapter "Convertigo Objects"
Sequencer
ELEMENT

OBJECT DESCRIPTION

Creates an XML element with a text content.

The Element step adds an element node with text content to parent generated XML element

in the sequence XML output.

The XML element resulting from this step can be output in the response XML of the sequence

if the Output property is set to true, or used as a source by any other following step.

The element is named after the value of the Node name property, its value is set thanks to a

source defined in Source property. If no source is defined or if its results is empty, the XML

element contains the value of the Default value property, if a value is defined in this property.

Notes:

 Child steps can be added under this step to create a data structure.

 In Convertigo Studio, when an Element step is created in a sequence, it can be easily

replaced by a Concat step, using the right-click menu on the step and choosing the option

Change to > Concat. The Node name property remains the same. The Source and

Default value properties are moved to the Concat step as two lines of the list of source

items to concat, one with a source defined and one with a default value defined.

OBJECT PROPERTIES

The table below describes the object properties:
2 - 246 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Property Type Category Description

Assigned XSD
Complex type
QName

XmlQName expert Defines a global schema Complex type to assign
as a type to this structured XML element.
This property allows to assign an XSD Complex
type to the structured XML element generated by
this step.
The QName defined by this property can be:
• a new Complex type name: the Complex type

will be created from this structure in the
project's schema,

• an already defined Complex type name: the
existing Complex type is used and possibly
enhanced by the structure generated by this
XML element (if not identical): the Complex
type will be a union of all XML structures
using it.

To use an already existing Complex type name,
the popup editor displays all types available in
the project's schema:
• in grey: all non editable schema types

(Convertigo standard error schema, types
imported through references, types of
transactions, etc.),

• in blue: all schema types dynamically
generated from the project's sequences,

• in green: all dynamic schema types explicitly
named by Assigned XSD Complex type
QName or Assigned XSD Element ref
QName properties.

Assigned XSD
Element ref QName

XmlQName expert Defines a global schema Element to assign as a
reference to this structured XML element.
This property allows to assign a referenced
Element to the structured XML element
generated by this step. The referenced Element
and its corresponding XSD Complex type will
also be created if non existing in the project's
schema.
The QName defined by this property can be:
• a new referenced Element name: the

referenced Element and the corresponding
Complex type will be created from this
structure in the project's schema,

• an already defined referenced Element
name: the existing referenced Element is
used and its Complex type is possibly
enhanced by the structure generated by this
XML element (if not identical): the Complex
type will be a union of all XML structures
using it.

To use an already existing referenced Element
name, the popup editor displays all types
available in the project's schema:
• in grey: all non editable schema types

(Convertigo standard error schema, types
imported through references, types of
transactions, etc.),

• in blue: all schema types dynamically
generated from the project's sequences,

• in green: all dynamic schema types explicitly
named by Assigned XSD Complex type
QName or Assigned XSD Element ref
QName properties.
2 - 247

Chapter "Convertigo Objects"
Sequencer
Assigned XSD Simple
type QName

XmlQName expert Defines the schema base type to assign as a
type to this simple XML element.
This property allows to assign a simple XSD type
to the simple XML element generated by this
step. It can only be used when the step actually
generates a simple XML element.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default value String standard Defines the default text value of the element.
This property allows defining a default value to
use when no source is defined or when the
source result is empty.

Is active boolean standard Defines whether the step is active.

Node name String standard Defines the tag name of the generated XML
element.
This property can contain any name, no words
are reserved, and must follow the rules on XML
naming:
• it can contain letters, numbers, and other

characters,
• it cannot start with a number,
• it cannot contain spaces nor punctuation

character.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source XMLVector expert Defines the source to use as value.
This property allows defining a node or a list of
nodes from a previous step on which current step
works.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the step uses the value defined in Default
value property, if a value is defined in this
property. Otherwise, the step creates an element
with no data.

Property Type Category Description
2 - 248 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
JELEMENT

OBJECT DESCRIPTION

Defines an XML element based on a JavaScript expression.

The jElement step adds an element node with text content to parent generated XML element

in the sequence XML output.

The XML element resulting from this step can be output in the response XML of the sequence

if the Output property is set to true, or used as a source by any other following step.

The element is named after the value of the Node name property, its value is set thanks to a

JavaScript expression defined in Expression property. If the JavaScript expression is null, the

XML element contains the value of the Default value property.

Note: Child steps can be added under this step to create a data structure.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Assigned XSD
Complex type
QName

XmlQName expert Defines a global schema Complex type to assign
as a type to this structured XML element.
This property allows to assign an XSD Complex
type to the structured XML element generated by
this step.
The QName defined by this property can be:
• a new Complex type name: the Complex type

will be created from this structure in the
project's schema,

• an already defined Complex type name: the
existing Complex type is used and possibly
enhanced by the structure generated by this
XML element (if not identical): the Complex
type will be a union of all XML structures
using it.

To use an already existing Complex type name,
the popup editor displays all types available in
the project's schema:
• in grey: all non editable schema types

(Convertigo standard error schema, types
imported through references, types of
transactions, etc.),

• in blue: all schema types dynamically
generated from the project's sequences,

• in green: all dynamic schema types explicitly
named by Assigned XSD Complex type
QName or Assigned XSD Element ref
QName properties.
2 - 249

Chapter "Convertigo Objects"
Sequencer
Assigned XSD
Element ref QName

XmlQName expert Defines a global schema Element to assign as a
reference to this structured XML element.
This property allows to assign a referenced
Element to the structured XML element
generated by this step. The referenced Element
and its corresponding XSD Complex type will
also be created if non existing in the project's
schema.
The QName defined by this property can be:
• a new referenced Element name: the

referenced Element and the corresponding
Complex type will be created from this
structure in the project's schema,

• an already defined referenced Element
name: the existing referenced Element is
used and its Complex type is possibly
enhanced by the structure generated by this
XML element (if not identical): the Complex
type will be a union of all XML structures
using it.

To use an already existing referenced Element
name, the popup editor displays all types
available in the project's schema:
• in grey: all non editable schema types

(Convertigo standard error schema, types
imported through references, types of
transactions, etc.),

• in blue: all schema types dynamically
generated from the project's sequences,

• in green: all dynamic schema types explicitly
named by Assigned XSD Complex type
QName or Assigned XSD Element ref
QName properties.

Assigned XSD Simple
type QName

XmlQName expert Defines the schema base type to assign as a
type to this simple XML element.
This property allows to assign a simple XSD type
to the simple XML element generated by this
step. It can only be used when the step actually
generates a simple XML element.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default value String standard Defines the default text value of the node.
This property allows defining a default value to
use when no content is specified thanks to the
Expression property of if this expression returns
null.

Expression JS expression standard Defines the expression evaluated to give the
output text.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the text string to output in the generated
element.

Is active boolean standard Defines whether the step is active.

Property Type Category Description
2 - 250 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
EXAMPLES

Example 1

Let’s consider a SearchOneKeyword sequence, which defines two variables named input

and maxResult. This sequence calls the searchGoogleWithLimit transaction, set in the

context of the "Starting With Convertigo Web Integrator" tutorial, with its input variable as

keyword and a hard-coded maxPages variable value. The sequence then tests whether the

transaction has returned an error message or not. In the first case, it ends by raising an

Exception, in the second case, it iterates on the results list and copies to sequence output the

maxResult first items.

In order to be able to call the searchGoogleWithLimit transaction with the input variable

value into transaction keyword variable, a jElement step is created with the following

parameters:

jElement [

expression: input

default value=<empty>

node name="input"

output=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

Node name String standard Defines the tag name of the generated XML
element.
This property can contain any name, no words
are reserved, and must follow the rules on XML
naming:
• it can contain letters, numbers, and other

characters,
• it cannot start with a number,
• it cannot contain spaces nor punctuation

character.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Sequencer objects examples in the
New Project wizard.
Associated project can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Web integration in the New
Project wizard.

Property Type Category Description
2 - 251

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 154: jElement step - Configuration example

The Expression property is set to input so the input variable value is set into this element

when the sequence is executed. The Output property is set to false although this is a step

generating XML because we don’t need this data to appear in the sequence XML output.

The step is created in the Steps folder of the sequence, next to various other steps used to

implement the sequence behavior described above. It appears as follows in the Projects view:
2 - 252 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 155: jElement step - Object in Projects view, with sequence and other steps

When executing the TestCase1 test case defined for the sequence, with input to

"convertigo" and maxResult to "10", the sequence calls the searchGoogleWithLimit

transaction with input variable passed as keyword thanks to a source pointing on the XML

element generated by the defined jElement step. The maxPages variable is passed with the

fixed value "3" defined in its default value.

Example 2

Let’s consider the GetXMLData sequence set in the context of the "Starting with Convertigo

Mashup Sequencer" tutorial.
2 - 253

Chapter "Convertigo Objects"
Sequencer
This sequence contains a jElement step called article_num which purpose is to generate

an article_num simple element serving as source for the variable of the following Call

Transaction step.

The article_num step Expression property is set to article_code to match the

sequence variable (see Figure 2 - 157), so that the GetArticleData transaction called by

the Call_Transaction_GetArticleData step can use the sequence variable as input

variable:

 Figure 2 - 156: jElement step - article_num jElement step properties

The Output property is set to false because we do not need to generate this element in the

sequence XML output. We just need its content to be immediately used by the second step

(Call Transaction) as input variable in the transaction.

The article_num jElement step appears as follows in the Projects view of the Convertigo

Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Mashup Sequencer" tutorial or the procedure “Opening a sample project
from the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Mashup sequencing in the New Project
wizard.
Associated projects can be opened by choosing Convertigo Samples
and Demos > Documentation samples > Legacy integration and
Web integration in the New Project wizard.
2 - 254 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 157: jElement step - article_num jElement step in GetXmlData sequence
2 - 255

Chapter "Convertigo Objects"
Sequencer
SPLIT

OBJECT DESCRIPTION

Not yet documented.

For more information, do not hesitate to contact us in the forum in our Developer Network

website: http://www.convertigo.com/itcenter.html
2 - 256 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
TRANSFORM

OBJECT DESCRIPTION

Not yet documented.

For more information, do not hesitate to contact us in the forum in our Developer Network

website: http://www.convertigo.com/itcenter.html
2 - 257

Chapter "Convertigo Objects"
Sequencer
COUNT

OBJECT DESCRIPTION

Not yet documented.

For more information, do not hesitate to contact us in the forum in our Developer Network

website: http://www.convertigo.com/itcenter.html
2 - 258 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
CONCAT

OBJECT DESCRIPTION

Concatenates defined sources.

Concat steps are used to concatenate string elements into one new resulting XML element

inserted in the output.

The Concat step uses an array of input strings (set using the Sources property) to be

concatenated. An optional Separator parameter can also be added. If used, the separator is

inserted in the resulting string between each concatenated element.

The resulting string is added to the sequence XML output and can be used as a new source

for other steps.

Note: In Convertigo Studio, when a Concat step is created in a sequence, it can be easily

replaced by an Element step, using the right-click menu on the step and choosing the option

Change to > Element.

 The Node name property remains the same.

 The first source filled in the Concat step is moved to the Source property of the Element

step.

 Default value properties defined in Concat step lines are concatenated and moved to the

Default value property of the Element step.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Assigned XSD Simple
type QName

XmlQName expert Defines the schema base type to assign as a
type to this simple XML element.
This property allows to assign a simple XSD type
to the simple XML element generated by this
step. It can only be used when the step actually
generates a simple XML element.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Node name String standard Defines the tag name of the generated XML
element.
This property can contain any name, no words
are reserved, and must follow the rules on XML
naming:
• it can contain letters, numbers, and other

characters,
• it cannot start with a number,
• it cannot contain spaces nor punctuation

character.
2 - 259

Chapter "Convertigo Objects"
Sequencer
EXAMPLES

The InsertDataInBase sequence set in the context of the "Starting With Convertigo

Mashup Sequencer" Quick Guide contains a Concat step called insertError.

The purpose of the insertError step is to output error messages in the

InsertDataInBase sequence XML when database errors occur. Error messages are made

up of concatenated elements, either fixed or sourced.

The insertError step appears as follows in the Projects View of the Convertigo Studio:

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Separator String expert Defines the text to be used as a separator string.
If set, this text is added between each text to
concatenate. Default value is a white space, think
about removing it if you do not want to use it.

Sources XMLVector expert Defines a list of source items to use as values.
This property allows defining a list of source
items that are used to create the result value.
Each source item contains three columns to be
set:
• Description: Defines a comment or

description about this source item.
• Source: Defines the source. A source is a

reference on a step previously existing in the
parent sequence, associated with an XPath
applied on the step's result DOM. At runtime,
the XPath is applied on the step's current
execution result XML and extracts a list of
XML nodes resulting from this execution.

• Default value: Defines the default value for
this source. If the source's XPath doesn't
match in the referenced step or if the source
is left blank, the default value is used.
Otherwise, the source item creates no data.

Each source item may define a source and a
default value.
Note: A new source item can be added to the list
using the blue keyboard icon. The source items
defined in the list can be ordered using the arrow
up and arrow down buttons, or deleted using the
red cross icon.

Property Type Category Description
2 - 260 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 158: InsertInDataBase sequence insertError step

When a database error occurs, the insertError step generates a line in the XML output

indicating that an error occured:

 Figure 2 - 159: Error messages produced by the insertError step

As mentioned before, error messages are made up of fixed an sourced elements:
2 - 261

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 160: Fixed and sources elements of concatenated error messages

The insertError element appears as follows in the Properties View:

f

 Figure 2 - 161: insertError Complex element properties

The Output property is set to true, indicating that the step generates XML content. The

generated tag name (insertError, see Figure 2 - 161) is defined through the Node name

property. The Sources property defines sources to be concatenated. They can be either fixed

or variable (respectively Default value or Source columns, see Figure 2 - 162):
2 - 262 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 162: Action sources window (setting of the concatenated string)
2 - 263

Chapter "Convertigo Objects"
Sequencer
DATE/TIME

OBJECT DESCRIPTION

Not yet documented.

For more information, do not hesitate to contact us in the forum in our Developer Network

website: http://www.convertigo.com/itcenter.html
2 - 264 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
GENERATE DATES

OBJECT DESCRIPTION

Creates a list of XML elements containing dates based on input definitions.

Generate dates step is used to generate a list of dates. These dates are generated based upon

Input properties.

Depending on Split property value, resulting dates can be:

 formatted, thanks to Output properties, into text in XML elements that are inserted in the

sequence's XML output,

 split in several pieces of information (day of week, day date, month, year) that are added

into an XML structure inserted in the sequence's XML output.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Assigned XSD Simple
type QName

XmlQName expert Defines the schema base type to assign as a
type to this simple XML element.
This property allows to assign a simple XSD type
to the simple XML element generated by this
step. It can only be used when the step actually
generates a simple XML element.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Input - Days of week XMLVector expert Defines the days of week.
This property defines the days of the week which
dates have to be generated. Days of week are
defined by numbers which can take different
values depending on the Java Calendar
compatibility property:
• for Java Calendar compatible format - M:2,

T:3, W:4, T:5, F:6, S:7, S:1;
• for classic format - M:1, T:2, W:3, T:4, F:5,

S:6, S:7.
Notes:
• For generating several days, separate days

numbers by a comma (","). For example:
"2,3,4,5,6,7,1" to generate all days with
Java Calendar compatibility property to
true.

• The order of defined days numbers does not
impact the dates generation. For example:
"2,3,4,5,6,7,1" and
"5,2,6,4,3,7,1" values give the same
output result dates.

Input - End date XMLVector expert Defines the end date using Input - format
property value format.
This property defines the date to which dates are
generated (day included).
2 - 265

Chapter "Convertigo Objects"
Sequencer
Input - Format String expert Defines the input dates format.
Input dates text must be formatted depending on
this property.
For example, if dates are entered in the following
form: 09/09/2009, the Input - Format property
can be set to:
• MM/dd/yyyy, with the Input - Locale

property set to US,
• dd/MM/yyyy, with the Input - Locale

property set to FR.
For more information on usable symbols, see
Appendix "Date format - Usable symbols".

Input - Locale String expert Defines the input dates locale.
Input dates text must be formatted depending on
this property.
For example, with the Input - Format property
set to dd MMMM yyyy, the Input - Locale
property can be set to:
• US, if entered dates look like 09 September

2009,
• FR, if entered dates look like 09 septembre

2009.

Input - Start date XMLVector expert Defines the start date using Input - format
property value format.
This property defines the date from which dates
are generated (day included).

Is active boolean standard Defines whether the step is active.

Java Calendar
compatibility

boolean expert Defines whether input/output properties values
are compatible with the Java Calendar.
If this property is set to false, the input/output
properties values use traditional calendar
notations:
• weekdays go from 1 to 7,
• months go from 01 to 12,
• days go from 01 to 31.
If this property is set to true, the input/output
properties values use Java Calendar notations:
• weekdays go from 1 to 7 (but order differs

from traditional calendar, see the Input -
Days of week property),

• months go from 0 to 11,
• days go from 1 to 31.

Node name String standard Defines the tag name of the generated XML
element.
This property can contain any name, no words
are reserved, and must follow the rules on XML
naming:
• it can contain letters, numbers, and other

characters,
• it cannot start with a number,
• it cannot contain spaces nor punctuation

character.

Property Type Category Description
2 - 266 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Output - Format String expert Defines the dates output format in "no split"
case.
This property defines the resulting date format
when dates are generated as texts (see Split
property description).
In this case, text of generated dates is formatted
depending on Output - Format property.
For example, if the Output - Format property is
set to yyyy MM dd, the 09/09/2009 resulting
date would be written: 2009 09 09.
For more information on usable symbols, see
Appendix "Date format - Usable symbols".

Output - Locale String expert Defines the dates output locale in "no split"
case.
This property defines the resulting date locale
when dates are generated as texts. Text is
formatted depending on this property.
For example, if the date is 09/09/2009 and the
resulting Output - Format property is set to
MMMM, the resulting date would be written:
• "September", with the Output - Locale

property set to US,
• "septembre", with the Output - Locale

property set to FR.

Split boolean expert Defines whether dates should be split into
several pieces of data or written as text.
If this property is set to false (i.e. "no split"
format), each generated date is created with the
following format:
<date>date into Output format format</
date>.
If this property is set to true (i.e. "split"
format), each generated date is created with the
following format:
<date>
 <dayOfWeek>value of dayOfWeek</
dayOfWeek>
 <day>value of day</day>
 <month>value of month</month>
 <year>value of year/year>
</date>

Property Type Category Description
2 - 267

Chapter "Convertigo Objects"
Sequencer
CONVERTIGO REQUEST STEPS
2 - 268 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
CALL TRANSACTION

OBJECT DESCRIPTION

Defines a step invoking a transaction.

The Call Transaction step enables to call any existing transaction from the same project or

another. It provides input variables to the target transaction, and returns XML data from the

call.

Variables to be used for the call must be described at step level by adding Variables child

objects. You can manually set variables or use the Import variables from the target

transaction contextual menu to automatically copy the variable definitions from the target

transaction.

The target transaction returns structured XML data, its XML schema has to be generated while

developing the transaction and is automatically imported to the Call Transaction step while

configuring its Transaction property. Thus, the transaction's schema is known by the calling

step and elements from the transaction result can be correctly sourced from it.

Notes:

 A Call Transaction step with all its properties filled and including the target variables can

be easily created at once in the Convertigo Studio Projects view. To do so, drag-and-drop

with Ctrl key pressed a transaction from its parent connector to a sequence or a block

step where the Call Transaction step has to be created.

 The client/server HTTP session of parent sequence is spread to the called transaction

context, even if it is called internally (Internal invoke property set to true).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Connection string XMLVector expert Replaces the connection parameters of target
connector.
The connection string represents different data
depending on connector type:
• HTTP / HTML connector: replaces the

connector URL string made up of the
connector's Server name, server Port, Root
path and transaction's Sub path properties.

• Javelin connector: replaces the address set
in the Connection address property, made
up of Connection parameter, Host name,
host Port and Connection type sub
properties.
2 - 269

Chapter "Convertigo Objects"
Sequencer
Context name JS expression standard Defines the specific context name to use (one is
automatically created otherwise).
This property is a JavaScript expression that is
evaluated at sequence execution. If not empty,
the computed context name is appended to
current session's JSessionID to define the
context ID of the context that is created.
The execution context of called transaction /
sequence is named:
• after the Context name property of the Call

Transaction / Call Sequence step,
• automatically thanks to parent sequence

parameters, if the Context name property is
not specified.

Every automatically named context will be
deleted at the end of the sequence execution.
Explicitly named contexts will remain for further
transaction or sequence use.
To re-use a named context, call the transaction /
sequence in the same session and pass the
context name through:
• the Context name property of Call

Transaction / Call Sequence step,
• the __context parameter sent to

Convertigo while calling the transaction /
sequence.

Note: The creation or the destruction of context is
effective in server mode only.

Internal invoke boolean standard Defines if the called transaction/sequence should
be called internally (through the Convertigo
engine) or externally (i.e. via the web application
server, in HTTP).
Since version 6.3.3 of Convertigo, the HTTP
session of parent sequence is spread to called
transaction/sequence context even if the
transaction/sequence is called using internal
invoke.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Transaction String standard Defines the target project, connector from this
project and transaction to request.
The target transaction must be one of the
transactions of one of the connectors from an
existing project, the project in which the Call
Sequence step is added or another project
opened in the same Convertigo.
This property is set by selecting the target
transaction in a list of values of the following
form:
<project_name>.<connector_name>.<tra
nsaction_name> to avoid mistakes in case of
transactions with the same name in several
projects.

Property Type Category Description
2 - 270 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
EXAMPLES

Example 1

Let’s consider a SearchOneKeyword sequence, which defines two variables named input

and maxResult. This sequence calls the searchGoogleWithLimit transaction, set in the

context of the "Starting With Convertigo Web Integrator" tutorial, with its input variable as

keyword and a hard-coded maxPages variable value. The sequence then tests whether the

transaction has returned an error message or not. In the first case, it ends by raising an

Exception, in the second case, it iterates on the results list and copies to sequence output the

maxResult first items.

In order to call the searchGoogleWithLimit transaction, a Call Transaction step is created

with the following parameters:

Call Transaction [

transaction=

sample_documentation_CWI.GoogleConnector.searchGoogleWithLimit

internal invoke=true

output=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Sequencer objects examples in the
New Project wizard.
Associated project can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Web integration in the New
Project wizard.
2 - 271

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 163: Call Transaction step - Configuration example

The step is created in the Steps folder of the sequence, next to various other steps used to

implement the sequence behavior described above. It appears as follows in the Projects view:
2 - 272 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 164: Call Transaction step - Object in Projects view

Two Variable objects are created in the Call Transaction step’s Variables folder, in order to

pass the variables values defined in the sequence to the called transaction. They are created

by using the Import variables from target transaction right-click context menu on the Call

Transaction step. For more information about these variables creation and parametrization,

see Step Variable object documentation.

When executing one of the test cases defined for the sequence, the sequence calls the

searchGoogleWithLimit transaction with input variable passed as keyword and

maxPages to fixed value "3". Then, the sequence gets the transaction result and continues

executing.

Example 2

Let’s consider the GetXMLData sequence set in the context of the "Starting with Convertigo
2 - 273

Chapter "Convertigo Objects"
Sequencer
Mashup Sequencer" tutorial.

This sequence contains a Call Transaction step called

Call_Transaction_GetArticleData which purpose is to call the GetArticleData

transaction set in the context of the "Starting with Convertigo Legacy Integrator" tutorial.

The Call_Transaction_GetArticleData step appears as follows:

 in the Projects view of the Convertigo Studio:

 Figure 2 - 165: Call_Transaction_GetArticleData step in GetXMLData Sequence

 in the Properties view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Mashup Sequencer" tutorial or the procedure “Opening a sample project
from the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Mashup sequencing in the New Project
wizard.
Associated projects can be opened by selecting Convertigo Samples
and Demos > Documentation samples > Legacy integration and
Web integration in the New Project wizard.
2 - 274 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 166: Call_Transaction_GetArticleData step properties

The purpose of the sequence being to generate a well structured XML output with limited

information only, the whole GetArticleData transaction XML output do not need to be

added to the sequence XML output. The Call Transaction step Ouput property is therefore set

to false.

 The Connection string value is empty because we do not need the default connection string

(made up of initial connector parameters) to be overridden by a replacement value.

The transaction’s result can the be used as a source by steps set further down the sequence,

thanks to its schema that was set when the transaction was created.
2 - 275

Chapter "Convertigo Objects"
Sequencer
CALL SEQUENCE

OBJECT DESCRIPTION

Defines a step invoking a sequence.

The Call Sequence step enables to call any existing sequence from the same project or

another. It provides input variables to the target sequence, and returns XML data from the call.

Variables to be used for the call must be described at step level by adding Variables child

objects. You can manually set variables or use the Import variables from the target

sequence contextual menu to automatically copy the variable definitions from the target

sequence.

The target sequence returns structured XML data, its XML schema has to be generated while

developing the sequence and is automatically imported to the Call Sequence step while

configuring its Sequence property. Thus, the sequence's schema is known by the calling step

and elements from the sequence result can be correctly sourced from it.

Notes:

 A Call Sequence step with all its properties filled and including the target variables can be

easily created at once in the Convertigo Studio Projects view. To do so, drag-and-drop

with Ctrl key pressed a sequence from its parent project to a sequence or a block step

where the Call Sequence step has to be created.

 The client/server HTTP session of parent sequence is spread to the called sequence

context, even if it is called internally (Internal invoke property set to true).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 276 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Context name JS expression standard Defines the specific context name to use (one is
automatically created otherwise).
This property is a JavaScript expression that is
evaluated at sequence execution. If not empty,
the computed context name is appended to
current session's JSessionID to define the
context ID of the context that is created.
The execution context of called transaction /
sequence is named:
• after the Context name property of the Call

Transaction / Call Sequence step,
• automatically thanks to parent sequence

parameters, if the Context name property is
not specified.

Every automatically named context will be
deleted at the end of the sequence execution.
Explicitly named contexts will remain for further
transaction or sequence use.
To re-use a named context, call the transaction /
sequence in the same session and pass the
context name through:
• the Context name property of Call

Transaction / Call Sequence step,
• the __context parameter sent to

Convertigo while calling the transaction /
sequence.

Note: The creation or the destruction of context is
effective in server mode only.

Inherit context boolean standard Defines whether the context used by the current
sequence for transaction's steps should also be
used by the target sequence.
Sequences are executing all child transactions
(transactions called thanks to Call transaction
steps) in a context automatically created (except
for transactions called thanks to a Call
transaction step with Context property set). For
other child transactions, the automatically
created context can be passed to a child
sequence (called thanks to a Call Sequence
step) for it to re-use this context for executing its
child transactions. To do so, set this property to
true.

Internal invoke boolean standard Defines if the called transaction/sequence should
be called internally (through the Convertigo
engine) or externally (i.e. via the web application
server, in HTTP).
Since version 6.3.3 of Convertigo, the HTTP
session of parent sequence is spread to called
transaction/sequence context even if the
transaction/sequence is called using internal
invoke.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Property Type Category Description
2 - 277

Chapter "Convertigo Objects"
Sequencer
Sequence String standard Defines the target project and sequence to
request from this project.
The target sequence must be one of the
sequences from an existing project, the project in
which the Call Sequence step is added or
another project opened in the same Convertigo.
This property is set by selecting the target
sequence in a list of values of the following form:
<project_name>.<sequence_name> to avoid
mistakes in case of sequences with the same
name in several projects.

Property Type Category Description
2 - 278 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
FILE MANAGEMENT STEPS
2 - 279

Chapter "Convertigo Objects"
Sequencer
READ XML

OBJECT DESCRIPTION

Reads an XML file content and loads it into the step's XML.

The Read XML step reads any XML file and loads its content. As a consequence, the content

of the XML file is available as a source for other following steps.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source JS expression expert Defines the path of the file to read.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the file to read.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 280 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
READ CSV

OBJECT DESCRIPTION

Reads a CSV file content and loads it into the step's XML.

The Read CSV step reads any CSV file and loads its content as an XML. As a consequence,

the content of the CSV file is available as a source for other following steps.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Column tag String standard Defines the column tag name.
Any tag name to use for columns in XML can be
configured using this property. Default value is
col.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Encoding String standard Defines the encoding used in the CSV file.
Default value for encoding is iso-8859-1.

Is active boolean standard Defines whether the step is active.

Line tag String standard Defines the lines tag name.
Any tag name to use for lines in XML can be
configured using this property. Default value is
line.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Separator String expert Defines the CSV default separator symbol.
Any separator character can be configured using
this property. Default value is {{Computer}};{{-
Computer }}.

Source JS expression expert Defines the path of the file to read.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the file to read.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 281

Chapter "Convertigo Objects"
Sequencer
Title line boolean expert Defines whether the CSV file has a title line or
not.
If set to true, the first line of the CSV file is
handled as a title line which means that each cell
of the first line is used as tag name for the
following lines, containing content.
More precisely, for each cell of the first line, if the
cell contains data, the tag associated with the
corresponding column is named after this data.
Otherwise or if the property is set to false, the
tag is named after the Column tag property.

Vertical direction boolean expert Defines the array reading direction.
If set to true, the reading direction is vertical.
Otherwise, it is horizontal.

Property Type Category Description
2 - 282 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
WRITE XML

OBJECT DESCRIPTION

Writes XML content in an XML file.

The Write XML step allows outputting XML content in an XML file on the disk. It can either

create a new XML file or update an existing XML file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Append Result boolean expert Defines whether the XML must be appended at
the end of the file.
If set to true, and if the file exists, the step
appends the XML at the end of the file. If set to
false, it overrides the current file content.

Append timestamp boolean standard Defines whether the file name should be created
with a timestamp.
If set to true, the date is concatenated to the file
name in yyyymmddHHmmssSSS format.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default root tag name String standard Defines the root element tag name of the
resulting XML to be written, if none is defined by
the source.
Setting this property allows adding a root element
named after this property value in the XML file
written.

Encoding String standard Defines the encoding used in output file.
Default used encoding is ISO-8859-1.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Output file JS expression standard Defines the output file path including the file
name.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path and name of the file to write.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 283

Chapter "Convertigo Objects"
Sequencer
Source XMLVector expert Defines the source data to write.
This property allows defining a list of nodes from
a previous step used as data root to be written in
the file.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the XML output document of the sequence
(i.e., sequence resulting XML) is used as source.
In this case, the step behavior can be seen as a
sequence output dump.
If REST or SOAP interfaces are used to call
parent sequence, the XML output document is
normally returned to the sequence caller.

Property Type Category Description
2 - 284 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
WRITE CSV

OBJECT DESCRIPTION

Writes XML content in a CSV file.

The Write CSV step allows outputting XML content in a CSV file on the disk. It can either create

a new CSV file or update an existing CSV file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Append Result boolean expert Defines whether the XML must be appended at
the end of the file.
If set to true, and if the file exists, the step
appends the XML at the end of the file. If set to
false, it overrides the current file content.

Append timestamp boolean standard Defines whether the file name should be created
with a timestamp.
If set to true, the date is concatenated to the file
name in yyyymmddHHmmssSSS format.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Encoding String standard Defines the encoding used in output file.
Default used encoding is ISO-8859-1.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Output file JS expression standard Defines the output file path including the file
name.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path and name of the file to write.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.

Separator String expert Defines the CSV separator symbol to be used.
By default, it uses the character ; as separator in
the CSV file.
2 - 285

Chapter "Convertigo Objects"
Sequencer
Source XMLVector expert Defines the source data to write.
This property allows defining a list of nodes from
a previous step used as data root to be written in
the file.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the XML output document of the sequence
(i.e., sequence resulting XML) is used as source.
In this case, the step behavior can be seen as a
sequence output dump.
If REST or SOAP interfaces are used to call
parent sequence, the XML output document is
normally returned to the sequence caller.

Title line boolean expert Defines whether data tags are named after the
first line of data (titles).
If set to true, the first line of the file is handled
as a title line. For each XML tag providing data in
this line, the tag content is added as title in the
title line.
If set to false, no title line is defined in the data
nor in the file.

Property Type Category Description
2 - 286 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
WRITE BINARY FROM BASE64

OBJECT DESCRIPTION

Writes a binary file from a Base64 content.

The Write binary from Base64 step allows writing a Base64 content from a response XML in

a binary file on the disk.

It can either create a new file or update an existing file, if a file of the same path and name

already exists.

The file extension has to be defined: it corresponds to the type of binary file to write. It can be

set in the Output file property, at the end of the file path.

A Base64 content must be used as input, defined by the Source property. Such input content

could be picked in output XML of transactions, for example:

 in an HTML transaction XML response: using the Print screen extraction rule or the Get

attachment statement in the transaction would add Base64 content to output,

 in an SQL transaction XML response: if the database contains a column with Base64

data, this content would be present in transaction output,

 etc.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Append timestamp boolean standard Defines whether the file name should be created
with a timestamp.
If set to true, the date is concatenated to the file
name in yyyymmddHHmmssSSS format.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 287

Chapter "Convertigo Objects"
Sequencer
Output file JS expression standard Defines the output file path including the file
name.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path and name of the file to write.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.

Source XMLVector expert Defines the source data to write.
This property allows defining a list of nodes from
a previous step used as data root to be written in
the file.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the XML output document of the sequence
(i.e., sequence resulting XML) is used as source.
In this case, the step behavior can be seen as a
sequence output dump.
If REST or SOAP interfaces are used to call
parent sequence, the XML output document is
normally returned to the sequence caller.

Property Type Category Description
2 - 288 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
COPY FILE

OBJECT DESCRIPTION

Copies a file or a directory to an another path.

The Copy file step duplicates a file or a directory from a path to another keeping the same

name.

Note: Source parent folder and Destination folder cannot be the same.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Destination JS expression expert Defines the destination directory path.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the destination folder, that must
be an existing folder. Otherwise, the copy will not
be possible.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Overwrite boolean expert If a file or folder with the same name exists in
Destination directory, this property defines
whether to overwrite it.
By default this property is set to false, so the
file or folder will not be overwritten if already
present in Destination directory.

Source JS expression expert Defines the path of the file or directory to copy.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the file or directory to copy.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 289

Chapter "Convertigo Objects"
Sequencer
DUPLICATE FILE

OBJECT DESCRIPTION

Duplicates a file or a directory in the same path.

The Duplicate file step duplicates a file or a directory in a given path updating its name.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Name of the copy JS expression expert Defines the name of the duplicated object (file or
directory).
Duplicating in the same parent folder, the copied
file or directory name must be updated. This
name must be different from original file or
directory name.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Overwrite boolean expert If a file or folder with the same name as the
Name of the copy property exists in current
directory, this property defines whether to
overwrite it.
By default this property is set to false, so the
previously existing file or folder will not be
overwritten if already present in current directory.

Source JS expression expert Defines the path of the file or directory to
duplicate.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the file or directory to duplicate.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 290 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
MOVE FILE

OBJECT DESCRIPTION

Moves a file or a directory to an another path.

The Move file step copies a file or a directory from a path to another keeping the same name

and removes the original one.

Note: Source parent folder and Destination folder cannot be the same.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Destination JS expression expert Defines the destination directory path.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the destination folder, that must
be an existing folder. Otherwise, the copy will not
be possible.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Overwrite boolean expert If a file or folder with the same name exists in
Destination directory, this property defines
whether to overwrite it.
By default this property is set to false, so the
file or folder will not be overwritten if already
present in Destination directory.

Source JS expression expert Defines the path of the file or directory to move.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the file or directory to move.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 291

Chapter "Convertigo Objects"
Sequencer
RENAME FILE

OBJECT DESCRIPTION

Renames a file or a directory.

The Rename step renames a file or a directory.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

New name JS expression expert Defines the new name for file or directory.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Overwrite boolean expert Defines whether the destination file or directory
should be overwritten if exists.

Source JS expression expert Defines the path of the file or directory to rename.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the file or directory to rename.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 292 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
DELETE FILE

OBJECT DESCRIPTION

Deletes a file or a directory.

The Delete step removes a file or a directory.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source JS expression expert Defines the path of the file or directory to delete.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the file or directory to delete.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 293

Chapter "Convertigo Objects"
Sequencer
CREATE DIRECTORY

OBJECT DESCRIPTION

Creates a new directory.

The Create directory step creates a new directory on disk.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Create non existent
parent directories

boolean expert Defines whether the non existent but necessary
parent directories should be created or not.
By default, this property is set to true: parents
directories specified in path but not existing on
disk are also created.
If set to false, the directory will be created only
if all parent directories are existing.

Destination JS expression expert Defines the destination path.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the destination folder.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 294 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
LIST DIRECTORY

OBJECT DESCRIPTION

Defines a step able to list the entries of a directory.

A List directory step lists all the non hidden files of the first level contained in the directory

specified by the Source directory property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source directory JS expression standard Defines the source directory path.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the directory which content has
to be listed.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 295

Chapter "Convertigo Objects"
Sequencer
HTTP SESSION MANAGEMENT
2 - 296 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
SET AUTHENTICATED USER

OBJECT DESCRIPTION

Sets a user ID as the authenticated user ID of the current context/session.

The Set authenticated user step allows to set a user ID as the authenticated user ID in the

current context/session and thereby, sets the current context/session as authenticated.

The user ID is set using the User ID property.

Note: Although its Output property is set to false by default, this step generates an

authenticatedUserID XML Element in output, that should always contain the user ID value

if the step succeeds.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 297

Chapter "Convertigo Objects"
Sequencer
User ID SmartType standard Defines the user ID that has to be set as
authenticated user.
This property is a "smart type" property, that
allows to define the user ID to set in
authentication.
A "smart type" property can be of one of the
following types:
• a text: the value is therefore a default text

value,
• a JavaScript expression: the value is

therefore a JavaScript expression that is
evaluated at sequence execution,

• a source: the value is a source and can be
picked using the source picker. A source is
defined as a reference on a step previously
existing in the parent sequence, associated
with an XPath applied on the step's result
DOM. At runtime, the XPath is applied on the
step's current execution result XML and
extracts a list of XML nodes resulting from
this execution.

Note: If you use the source type for this property,
the XPath application on target XML should give
a text result. Otherwise, the first node's text
content is taken.

Property Type Category Description
2 - 298 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
GET AUTHENTICATED USER

OBJECT DESCRIPTION

Gets the authenticated user ID from the context/session.

The Get authenticated user step allows to retrieve in an XML Element the authenticated user

ID from the context/session, if the context/session is authenticated. Otherwise, it returns an

empty value.

The element is named after the value of the Node name property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Node name String standard Defines the tag name of the generated XML
element.
This property can contain any name, no words
are reserved, and must follow the rules on XML
naming:
• it can contain letters, numbers, and other

characters,
• it cannot start with a number,
• it cannot contain spaces nor punctuation

character.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 299

Chapter "Convertigo Objects"
Sequencer
REMOVE AUTHENTICATED USER

OBJECT DESCRIPTION

Removes the authenticated user ID from the context/session.

The Remove authenticated user step allows to remove the authenticated user ID from the

context/session. The context/session is not authenticated anymore.

Note: Although its Output property is set to false by default, this step generates an

authenticatedUserID XML Element in output, that should always be empty if the step

succeeds.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 300 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
GET FROM SESSION

OBJECT DESCRIPTION

Gets a stored variable/object from the session.

The Get from session step allows to easily retrieve a value previously stored (thanks to the Set

in session step for example) using its key.

Note: The HTTP session is shared by all contexts that are executed for a same user's requests.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Key String standard The key of the variable/object to retrieve, i.e. the
stored variable name.
The variable/object was stored in session using a
key, also called name. This property allows to
specify the name of the variable/object to
retrieve.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 301

Chapter "Convertigo Objects"
Sequencer
SET IN SESSION

OBJECT DESCRIPTION

Stores a variable/object in the session.

The Set in session step allows to easily store a value that will be recoverable using its key.

Note: The HTTP session is shared by all contexts that are executed for a same user's requests.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Key String standard The key of the variable/object to store in session,
i.e. the variable name.
The variable/object to store in session is
identified by a key, also called name. This
property allows to specify the name of the
variable/object to store (in order to be
recoverable later using the same key, for
example using the Get from session step).

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Value SmartType standard The variable/object to store in session, i.e. the
value.
This property is a "smart type" property, that
allows to specify the variable/object to store in
session.
A "smart type" property can be of one of the
following types:
• a text: the value is therefore a default text

value,
• a JavaScript expression: the value is

therefore a JavaScript expression that is
evaluated at sequence execution,

• a source: the value is a source and can be
picked using the source picker. A source is
defined as a reference on a step previously
existing in the parent sequence, associated
with an XPath applied on the step's result
DOM. At runtime, the XPath is applied on the
step's current execution result XML and
extracts a list of XML nodes resulting from
this execution.
2 - 302 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
OTHERS
2 - 303

Chapter "Convertigo Objects"
Sequencer
INPUT VARIABLES

OBJECT DESCRIPTION

Defines an XML element containing dynamically the input variables of parent Sequence.

Placed at the beginning of a Sequence, this step allows steps ordered after to use the

Sequence input variables as source.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the step is active.

Node name String standard Defines the tag name of the generated XML
element.
This property can contain any name, no words
are reserved, and must follow the rules on XML
naming:
• it can contain letters, numbers, and other

characters,
• it cannot start with a number,
• it cannot contain spaces nor punctuation

character.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 304 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
SMTP SEND

OBJECT DESCRIPTION

Defines a step able to send emails through an SMTP server.

The SMTP send step is used to make the sequence send an email to designated email

addresses through an SMTP server. This is useful for monitoring a sequence progress or

completion.

When executed, an SMTP send step tries to send an email using a specified set of parameters.

If ever the specified SMTP server does not support relaying or anonymous sending, the SMTP

send step supports authentication.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attachments XMLVector standard Defines a list of file attachments to send with the
email.
This property is an array of files to send as email
attachments. Each email attachment is a pair of
values:
• Filepath: the path of the local file to send,

including its original name, defined as a
JavaScript expression that is evaluated
during the sequence execution,

• Filename: the name of the file as attached in
the email, defined as a JavaScript expression
that is evaluated during the sequence
execution.

The filepaths are either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
Note: A new attachment can be added to the list
using the blue keyboard icon. The attachments
defined in the list can be ordered using the arrow
up and arrow down buttons, or deleted using the
red cross icon.

Authentication type SmtpAuthType expert Defines the SMTP authentication type.
You can choose the authentication used by the
SMTP send step amongst the following types:
• None: no authentication, this value is set by

default,
• Basic: basic authentication,
• STARTTLS: authentication using STARTTLS,
• SSL/TLS: authentication using SSL/TLS.
All authentication types use the username and
password set in the SMTP user and SMTP
password properties.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 305

Chapter "Convertigo Objects"
Sequencer
Content-type JS expression expert Defines the content-type of the email content.
This property is a JavaScript expression that is
evaluated during the sequence execution and
allows to override the default content-type.
If this property is left empty, the default content-
type is:
• text/plain; charset=UTF-8 in

standard text email,
• text/html; charset=UTF-8 in HTML

content email, i.e. if an XSL file is defined in
the XSL file property.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Recipients email
addresses

JS expression standard Defines recipient email addresses.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the list of recipient email addresses.
This property contains a list of email addresses,
separated by semi-colons or commas.
The syntax to use is of the following form:
<type>:<email address>, where <type>
can be To, Cc or Bcc. For example,
To:myself@mydomain.com.
Notes: If not specified, the first address is always
considered the main recipient (To), following
addresses are considered secondary recipients
(Cc).

SMTP password String expert Defines the SMTP server authentication user
password.
Used alongside SMTP user to authenticate on
the SMTP server.
To prevent authentication, leave both SMTP user
and SMTP password properties empty.
Convertigo then establishes anonymous
connection on the SMTP server.

SMTP port String expert Defines the listening port of the SMTP server.
Default is 25 for non-auth servers, it can be 587
or 465 for TLS/SSL or STARTTLS servers.

SMTP server String standard Defines the name or IP address of the SMTP
server.
This server must be able to deliver emails to the
domains used in recipients addresses. In some
cases, you may have to use authentication.

SMTP user String expert Defines the SMTP server authentication
username.
If this parameter is used, the step tries to
authenticate on the SMTP server using it along
with SMTP password.

Property Type Category Description
2 - 306 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Sender email address String expert Defines the email address of the sender.
This property is a text that contains an email
address, but can also accept a value of this form
Convertigo <noreply@fakedomain.fake>
to add the name of the email address owner. It is
useful if you want the receiver(s) to be able to
answer the received email.
This property is used depending on the SMTP
server, it can be:
• informative and have no consequence in the

email sending,
• automatically replaced by the SMTP server

by the real email address matching the
authentication,

• used by the SMTP server to send the email,
• etc.
Consult your SMTP server documentation for
more information about the FROM email field.

Source XMLVector expert Defines the source to build email body.
This property allows defining a list of nodes from
a previous step used to build the email body
content.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
The resulting nodes are written in the email body
content depending on the nodes types:
• Attribute/Text node/Comment/CDATA

section: the node text content is directly
copied to the email body content,

• Element: the element's DOM is pretty
printed in the email body content with nice
indentation to easily read the XML,

• Other: the node's DOM is pretty printed in
the email body content.

If the XPath doesn't match or if the source is left
blank, the XML output document of the sequence
(i.e., sequence resulting XML) is used as source.
In this case, the step behavior can be seen as a
sequence output dump.

Subject JS expression standard Defines the email subject.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the email subject.
Notes: It is recommended to not leave it empty.

Property Type Category Description
2 - 307

Chapter "Convertigo Objects"
Sequencer
EXAMPLES

The following examples of the SMTP send step are based on a SendEmail sequence from

the Convertigo Mashup Sequencer project named sample_refManual_steps.

Example 1

Let’s consider the SendEmail sequence, which generates a small XML stucture as sequence

output, including no dynamic data. After generating the XML output, we want to email the

sequence result to a recipient email address. To do so, a SMTP send step is created with the

following parameters:

SMTP send [

comment: Example 1

recipients email addresses: your_email@convertigo.com

SMTP server: smtp.gmail.com

subject: Convertigo sequence report

authentication type: STARTTLS

sender email address: c8o.exemples@gmail.com

SMTP user: c8o.exemples@gmail.com

SMTP password: **********

 SMTP port: 587

source: [

Complex_seq_result,

//document/seq_result

]

output=false

XSL file JS expression standard Defines the XSL file path to apply on the XML
content to send an HTML email content.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path and name of the XSL file to use to
transform the XML data in HTML content. This
has as result to send an HTML content email
instead of an XML/text email.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
If the path is empty, not XSL transformation is
applied and the mail content is a plain XML/text.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Sequencer objects examples in the
New Project wizard.
Associated project, not used in this example, can be opened by selecting
Convertigo Samples and Demos > Documentation samples > Web
integration in the New Project wizard.

Property Type Category Description
2 - 308 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 167: SMTP send step - Example 1 - Configuration example

The SMTP server and related parameters are configured with a Gmail examples account

dedicated to these examples. This account is connected with STARTTLS authentication.

The Recipients email addresses parameter is configured with a fake email address. In order

to test this sequence execution, you can edit this property to set your own email address. You

will then receive the email.

The Source property points towards the root node from the previous Complex step, which is

the basis of the XML structure generated as sequence output:
2 - 309

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 168: SMTP send step - Example 1 - Source configuration

The whole seq_result complex step as well as its content during execution will be send as

email body.

The SMTP send step is created in the Steps folder of the sequence, next to the other steps

used to implement the sequence behavior described above. It appears as follows in the

Projects view:
2 - 310 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 169: SMTP send step - Example 1 - Object in Projects view, with sequence and other steps

After configuring your email address as recipient, execute the sequence and check your emails

to see the sent email. It is a text email of the following form:

 Figure 2 - 170: SMTP send step - Example 1 - Received text email
2 - 311

Chapter "Convertigo Objects"
Sequencer
Example 2

Let’s consider the same SendEmail sequence, which generates a small XML stucture as

sequence output. This XML output is the following:

<document>

<seq_result>

 <elem>yes</elem>

 <elem>no</elem>

 <elem>maybe</elem>

</seq_result>

</document>

Now we want to send an email using this sequence result in order to build an HTML email. To

do so, the previously generated SMTP send step is duplicated and updated with the following

parameter values:

SMTP send [

Comment: Example 2

recipients email addresses: your_email@convertigo.com

SMTP server: smtp.gmail.com

subject: Convertigo sequence report

authentication type: STARTTLS

sender email address: c8o.exemples@gmail.com

SMTP user: c8o.exemples@gmail.com

SMTP password: **********

 SMTP port: 587

source: []

XSL file: ".//xsl/email.xsl"

output=false

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 312 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 171: SMTP send step - Example 2 - Configuration example

The XSL file parameter is configured with a JavaScript string between quotes as the path to

the XSL file to use is not dynamic. This path is relative to the project folder, it begins by .//

and then we see that the email.xsl file in in a folder named xsl. In the Project Explorer view,

we can see the file and folder:
2 - 313

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 172: SMTP send step - Example 2 - XSL file in resources

The Source property has been unset so as the sequence XML output is used as source. The

whole document as well as its content during execution will be used to build the email body.

The SMTP send step is created in the Steps folder of the sequence. It appears as follows in

the Projects view:

 Figure 2 - 173: SMTP send step - Example 2 - Object in Projects view, with sequence and other steps

Let’s have a look at the XSL file content to understand how it is applied. Opening the

email.xsl file in the XSL editor displays the following code:
2 - 314 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 174: SMTP send step - Example 2 - XSL file content

We can easily identify the parts of the file that are applying a transformation on the XML

document root, on the seq_result node and on the elem nodes.

After configuring your email address as recipient, execute the sequence and check your emails

to see the sent email. It is an HTML email of the following form:
2 - 315

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 175: SMTP send step - Example 2 - Received HTML email

Example 3

Let’s consider the SendEmailWithAttachement sequence, which generates a message in

an XML Element, not included in the sequence’s XML output. We want to send an email with

the message contained in the Element, to a recipient email address passed as variable (named

recipient), and including attached files. To do so, a SMTP send step is created with the

following parameters:

SMTP send [

comment: Example 3

recipients email addresses: recipient

SMTP server: smtp.gmail.com

subject: Sending attachments

authentication type: STARTTLS

sender email address: c8o.exemples@gmail.com

SMTP user: c8o.exemples@gmail.com

SMTP password: **********

 SMTP port: 587

source: [

Complex_seq_result,

//document/message/text()
2 - 316 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
]

attachments: [

filepath: .//images/New-York.jpg, filename: nyc.jpg

filepath: .//images/New-York-Tourist-Map.jpg, filename: map.jpg

]

output=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 176: SMTP send step - Example 3 - Configuration example

The Attachments property is edited in the associated editor:
2 - 317

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 177: SMTP send step - Example 3 - Attachments property edition

The Filepath properties are configured with a JavaScript string between quotes: the paths of

the files to attach are not dynamic. These paths are relative to the project folder, they begin by

.// and then we see that they are located in an images folder. In the Project Explorer view,

we can see the folder and files:

 Figure 2 - 178: SMTP send step - Example 3 - Files in project resources

The Recipients email addresses property is configured with a JavaScript expression using

Beware that the two columns of each attachement are JavaScript
expressions.
2 - 318 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
the sequence recipient variable. In order to test this sequence execution, you can edit the

variable value in the test case created for the sequence to set your own email address. You

will then receive the email.

The Source property points towards the text node inside the message Element step:

 Figure 2 - 179: SMTP send step - Example 3 - Source configuration

Only the text content will be sent as email body.

The SMTP send step is created in the Steps folder of the sequence, next to the other steps

used to implement the sequence behavior described above, the sequence variable and test

case. It appears as follows in the Projects view:
2 - 319

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 180: SMTP send step - Example 3 - Object in Projects view, with sequence and other objects

After configuring your email address as recipient in the test case variable, execute the test

case and check your emails to see the sent email. It is a text email of the following form:
2 - 320 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
 Figure 2 - 181: SMTP send step - Example 3 - Received text email with attached files

The two attachment files are received in the email, using the new names given by the

Attachments property.
2 - 321

Chapter "Convertigo Objects"
Sequencer
PUSH NOTIFICATIONS

OBJECT DESCRIPTION

Defines a step able to send notifications to mobile devices.

The Push Notifications step is used to make the sequence send a notification to mobile devices

using one of the standard APNS (Apple), or GCM (Android) channels.

The list of devices to which send the notification is configured using the Device tokens

property. The data to be sent in the notification is configured using the Notification data

property.

Other properties (which names start by APNS or Google) are those to use in order to configure

the technical parameters of the push system.

Note: For more information about using Push notifications in Convertigo, please refer to the

article in our technical blog: http://www.convertigo.com/en/how-to/technical-blog/entry/using-

convertigo-push-manager.html

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

APNS certificate
password

JS expression standard Defines the password of the Apple .p12
certificate file.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the valid password for the .p12 certificate
file.

APNS client
certificate

JS expression standard Defines an Apple .p12 certificate file to use for
push on iOS devices.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of a .p12 certificate file. The .p12
file must be generated by Apple's Certificate
portal (https://developer.apple.com/account/
overview.action). This path is either absolute or
relative to Convertigo environment. Relative
paths starting with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
Note: Do not put the .p12 certificate in the
DisplayObject folder of the current Convertigo
project as it will be packaged within the mobile
application during the build process. This would
lead to a security breach.

APNS notification
type

ApnsNotificatio
nType

standard Defines the type of push notification for Apple's
APNS.
This property allows to define which Apple's
APNS push type is to be used. It can take one of
the following values:
• Message: sends messages,
• Badge: notifies application's badge,
• Sound: plays a sound.
Default value is Message.
2 - 322 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Android push time to
live

JS expression standard Defines the time to live (in seconds) of the push
notification for Android devices.
The Android push time to live property allows
to define the time to live of the message sent for
Android GCM. If the message is not delivered
within this time, it will be discarded.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the time to live in seconds (it should be an
integer value).
Default value is 3600 seconds, i.e. one hour.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Device tokens XMLVector standard Defines the list of tokens identifying the mobile
devices to notify.
The Device tokens property is of source type,
defining a list of nodes from a previous step for
current step to work on.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the step has no data to work on: no device
is selected, no notification is sent, and the parent
sequence execution continues.
Notes:
• The mobile device tokens must be known

from the Convertigo Server so a list of tokens
can be used in this property. Generally, the
tokens are generated by the mobile device
itself and are sent to Convertigo Server by
executing a "storing" sequence. The "storing"
sequence should store the tokens in a
database (or else), so that they can be
retrieved and used in this property.

• The mobile device tokens are destination
aware: an Android Google Cloud Messaging
token will start by gcm: and Apple's APNS
tokens will start by apns:. The tokens stored
server-side already contain this piece of
information.

Google API key JS expression standard Defines the Google Cloud messaging API key to
use for push on Android devices.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the Google Cloud messaging API key. This
key can be obtained by following the Google
Cloud Messaging documentation (http://
developer.android.com/google/gcm/gs.html).

Is active boolean standard Defines whether the step is active.

Property Type Category Description
2 - 323

Chapter "Convertigo Objects"
Sequencer
Notification data XMLVector standard Defines the data to be sent in the notification.
The Notification data property is of source type,
defining a list of nodes from a previous step for
current step to work on.
A source is defined as a reference on a step
previously existing in the parent sequence,
associated with an XPath applied on the step's
result DOM. At runtime, the XPath is applied on
the step's current execution result XML and
extracts a list of XML nodes resulting from this
execution.
If the XPath doesn't match or if the source is left
blank, the step has no data to work on:
notification is sent with no data.
This content can be a text message, a number to
be displayed on a badge, or the name of a sound
to play, depending on the APNS notification
type property value (only for iOS devices).

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Property Type Category Description
2 - 324 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
REMOVE CONTEXT

OBJECT DESCRIPTION

Defines a step which removes a named Convertigo context.

The Remove context step removes a Convertigo context that was created by:

 a previous Call Transaction or Call Sequence step for which a specific context name was

defined,

 an __context parameter sent to Convertigo while previously calling a transaction/

sequence.

The name of the context to remove is specified through the Context name property.

Note: The creation or the destruction of a named context is effective in server mode only.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Context name JS expression expert Defines the name of the context to remove.
This property is a JavaScript expression that is
evaluated at sequence execution. The computed
context name is appended to the current session
JSessionID to define the context ID that is
removed.

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.
2 - 325

Chapter "Convertigo Objects"
Sequencer
PROCESS EXECUTE

OBJECT DESCRIPTION

Defines a step able to execute a process.

A Process execute step executes the string command specified by the Command line

property in a separate subprocess.

The subprocess environment parameters and working directory may be defined through the

Environment parameters and Execution directory properties. If left empty, they're inherited

from the current process.

Depending on the value of the Wait for end property, the step will wait or not until the

subprocess has terminated.

Note: Only real programs can be executed thanks to this step. In other words, you cannot

execute commands interpreted by a shell (Windows DOS or Linux Bash for example).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Command line JS expression standard Defines the process command line.
This property is a JavaScript expression that is
evaluated at sequence execution. JavaScript
variables and code are supported in this property.
The syntax of this command line depends on the
operating system where Convertigo is installed.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Encoding String standard Defines the encoding used for the process
output.
Default value is UTF-8. If value is left empty, the
default encoding of the Java virtual machine is
used.

Environment
parameters

XMLVector standard Defines the process environment parameters.
This property allows to define a list of
environment parameters to define for the process
execution. For each environment parameter, two
columns have to be set:
• Variable: defines the name of the parameter,
• Value: defines the value of the parameter.
Notes:
• A new environment parameter can be added

to the list using the blue keyboard icon. The
environment parameters defined in the list
can be ordered using the arrow up and arrow
down buttons, or deleted using the red cross
icon.

• If left empty, environment parameters are
inherited from the current process,
Convertigo.
2 - 326 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Execution directory String standard Defines the process execution directory.
If left empty, execution directory is inherited from
the current process, Convertigo.
For a project running in Convertigo Studio, the
default directory is the installation directory (were
is found the ConvertigoStudio.exe file). For
a project running in Convertigo Server, the
default directory is the application server root
folder (tomcat folder for a standard Server
installation on Windows).

Is active boolean standard Defines whether the step is active.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Wait for end boolean standard Specifies whether the sequence should wait for
the end of the process before continuing with
next step.
Default value is true, so the following step in the
parent sequence is executed only after the
process execution has returned.

Property Type Category Description
2 - 327

Chapter "Convertigo Objects"
Sequencer
LOG (SEQUENCER)

OBJECT DESCRIPTION

Produces output data in log file.

This step outputs a message in the Convertigo logger defined in the Logger property, for the

log level defined in the Level property.

The message to output is generated from the JavaScript expression defined in Expression

property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression standard Defines the expression evaluated to give the text
to output.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the text string to output in log file.

Is active boolean standard Defines whether the step is active.

Level String standard Defines the log level on which the log applies.
This property defines the minimum level of log for
which the message has to be output. The
message will be output for any log level superior
or equals to this property value.
Log levels possible values are the following, by
ascending order:
• ERROR,
• WARN,
• INFO,
• DEBUG,
• TRACE.

Logger String standard Defines the logger on which the log applies.
This property defines Context logger as default
logger.
This value can be updated. Possible logger
values are the following:
• Engine: the message will be seen as output

by the Convertigo Engine,
• Context: the message will be seen as

output by the running Context,
• Context.User: the message will be seen

as output in the running Context, defined by
the User,

• Context.Audit: the message will be seen
as output in the running Context, in a
separate Audit logger.
2 - 328 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Sequencer
Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Property Type Category Description
2 - 329

Chapter "Convertigo Objects"
Sequencer
HASH CODE

OBJECT DESCRIPTION

Generates a hash code from a given file.

The Hash code step generates a hash code from a given file using a predefined algorithm, that

can be configured using the Hash algorithm property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Hash algorithm HashAlgorithm standard Defines the algorithm to use for file hashing.
This property can take one of the following
values:
• MD5: uses MD5 algorithm to generate the

hash from the file,
• SHA-1: uses SHA-1 algorithm to generate

the hash from the file.

Is active boolean standard Defines whether the step is active.

Node name String standard Defines the tag name of the generated XML
element.
This property can contain any name, no words
are reserved, and must follow the rules on XML
naming:
• it can contain letters, numbers, and other

characters,
• it cannot start with a number,
• it cannot contain spaces nor punctuation

character.

Output boolean expert Defines whether the XML generated by this step
should be appended to the resulting XML.
Set this property to true to add the step's
resulting XML to the sequence's output XML
(default value for steps generating XML). Set this
property to false to prevent the steps's XML
result to appear in the sequence's output XML.
Setting this property to false does not prevent
the step's generated XML from being used as a
source by other steps.

Source JS expression standard Defines the path of the file to hash.
This property is a JavaScript expression that is
evaluated during the sequence execution and
gives the path of the file to hash.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
2 - 330 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SAP
2.4 SAP
2 - 331

Chapter "Convertigo Objects"
SAP
2.4.1 Main objects
2 - 332 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SAP
SAP CONNECTOR

OBJECT DESCRIPTION

Establishes connection with SAP Systems using the JCo Connectors.

A SAP connector enables Convertigo to connect to any SAP NetWeaver application (such as

SAP ERP, etc.), execute BAPIs (Business APIs) and extract data into a proper XML document

from them.

The access to the target SAP application is configured using the Application server host

property, the System Number property and the Client property. Credentials are defined in

the User name and the User password properties. The language can be configured using the

Language property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Application server
host

String standard Defines the host name or IP address of the SAP
application server.
This property defines the DNS name or IP
address of the target SAP application server.

Billing Java class String expert Defines the Java class name executed for billing
pruposes.
Convertigo supports a plugin architecture offering
billing functionalities. Set the name of the billing
class to be called by Convertigo for billing
purposes.

Carioca
authentication

boolean expert Defines whether the connector requires a
Carioca authentication.
Set to true if you require that only Carioca-
authenticated users be able to use this
connector.

Client String standard Defines the SAP client.
This property defines the SAP client, allowing to
target a client environment in the SAP server.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

End transaction String expert Defines the transaction to execute before
removing the context.
When a Convertigo context is removed, the
specified "End transaction" is executed. Place in
this transaction any clean up code, for example a
Logout transaction.

Language String standard Defines the SAP language.
This property defines the SAP language.

System number String standard Defines the SAP system number.
This property defines the SAP system number,
also known as instance number, allowing to
target the SAP instance to be accessed.
2 - 333

Chapter "Convertigo Objects"
SAP
User name String standard Defines the SAP user name.
This property defines the SAP user.

User password String standard Defines the SAP user password.
This property defines the SAP user password.
This password must correspond to user name
defined in the User name property.

Property Type Category Description
2 - 334 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SAP
SAP TRANSACTION

OBJECT DESCRIPTION

Defines a SAP transaction.

A SAP transaction allows Convertigo to call a SAP BAPI function in the SAP application which

is accessed by the parent SAP connector.

The BAPI function call takes as parameters the transaction's variables, with their dynamic

value at runtime. The BAPI function response is automatically transformed to XML data and

returned in transaction's output response.

The schema of the SAP transaction are directly extracted from BAPI definition at transaction

creation.

Note: Do not confuse Convertigo SAP transaction with SAP Transaction.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Accessibility Accessibility standard Defines the transaction/sequence accessibility.
This property can take the following values:
• Public: The transaction/sequence is

runnable from everyone and everywhere,
visible in the Test Platform and is also
exposed in the SOAP WSDL as a web
service method.

• Hidden: The transaction/sequence is
runnable but only from people who know the
execution URL, not visible in the Test
Platform nor exposed in the SOAP WSDL.

• Private: The transaction/sequence is only
runnable from within the Convertigo engine
(Call Transaction/(Call Sequence steps), is
not visible in the Test Platform and cannot be
requested as SOAP web service method.
This value is used for tests, unfinished
transactions/sequences or functionalities not
to be exposed. Private transactions/
sequences remain runnable in the Studio, for
the developer to be able to test its
developments.

Note: In the Test Platform:
• The administrator user (authenticated in

Administration Console or Test Platform) can
see and run all transactions / sequences, no
matter what their accessibility is.

• The test user (authenticated in the Test
Platform or in case of anonymous access)
can see and run public transactions/
sequences and run hidden ones if he knows
their execution URL.
2 - 335

Chapter "Convertigo Objects"
SAP
Add statistics to
response

boolean expert Defines whether some statistics of execution of
the transaction/sequence should be added as
data in the transaction/sequence's response.
If this property is set to true, the transaction/
sequence response will be enhanced with the
statistics data of its execution (total time for the
request, time spent waiting for the mainframe,
etc.).
Note: This property has nothing to do with the
general property of the Convertigo engine Insert
statistics in the generated document that can
be edited in the Configuration page of the
Administration Console.

Authenticated context
required

boolean expert Defines whether an authenticated context is
required to execute the transaction/sequence.
If this property is set to true, the context of
execution of the transaction/sequence must have
been authenticated. Otherwise, the transaction/
sequence is not executed. Default value is
false for a standard access to transactions/
sequences.
Notes:
• When a context is authenticated, all the

contexts in the same HTTP session are also
authenticated. For more information about
context and HTTP session, see Context
general presentation paragraph in JavaScript
Objects APIs chapter.

• When executing a transaction/sequence from
stub (__stub variable passed to true in
entry), this property is ignored. Indeed,
executing from stub is for testing purposes
and should not require any authentication:
the context would never be authenticated as
the transaction/sequence setting the context
as authenticated could also be executed from
stub.

Authenticated user as
cache key

boolean expert Defines whether the authenticated user should
be used as cache key.
When the cache is enabled (Response lifetime
setting filled with a time-to-live), the
Authenticated user as cache key property
allows to specify to use the authenticated user ID
from context/session as an additional key to the
cache.
It would have as effect that two different identified
users cannot retrieve the cached response of the
other for the same request. Default value is
false: the authenticated user is not used as
cache key.

BAPI name String standard Defines the BAPI function to call for this
transaction.
The BAPI name property allows to define the
name of the BAPI function to call on the target
SAP application.
Any BAPI name can be used, in accordance with
the target SAP application and available BAPIs
(depending on the parent SAP connector
configuration).

Property Type Category Description
2 - 336 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SAP
Call the biller boolean expert Defines whether the billing management module
should be called for each generated XML
document.
If this property is set to true, the applicable
billing management module, defined thanks to
the connector's billing class name property, is
invoqued. This parameter should never be
changed (Convertigo private use only).

Character set String expert Defines the character set used for operations on
the generated XML document (default: UTF-8).

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Include certificate
group

boolean expert Includes the certificate group into the cache key.
If set to true, the certificate group is added to
the cache key which is used to determine
whether the transaction's response should be
pulled from the cache or not.
A transaction's cached response is pulled from
the cache when all cache key values are
corresponding to a stored cache entry.

Response client
cache

boolean expert Defines whether the transaction/sequence
response should be cached by the client.
If set to false, the response XML is sent to the
client along with HTTP headers forcing the client
browser not to store it in its local cache. This is
the default value, since dynamic responses are
usually preferred. If set to true, the XML
response is sent normally.

Property Type Category Description
2 - 337

Chapter "Convertigo Objects"
SAP
Response lifetime String expert Defines the response time-to-live (in seconds) in
cache, i.e. the time during which the cached
response remains valid or time interval for its
renewal. This property enables the cache when
filled, disables the cache when left empty.
The Response lifetime property allows to
specify the cache settings for the transaction/
sequence's response. It can be set to the
following values:
• <empty>: Disables the cache for the

transaction/sequence. The response will not
be cached and each request will execute the
complete transaction. It is the default value.

• absolute,<time in secs>: Enables the
cache for the transaction/sequence. The
response will be cached for the time specified
in seconds. If an other request with the same
parameters occurs within this time, the
response will be returned from the cache.

• daily,hh:mm:ss: Enables the cache for
the transaction/sequence. The response will
be cached until hh:mm:ss of the current day
is reached. If an other request with the same
parameters occurs before this time, the
response will be returned from the cache. A
new day starts at 00:00:00.

• weekly,hh:mm:ss,w: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the wth
day of week is reached. For Sunday w = 1,
for Monday w = 2 ... and for Saturday w = 7. If
an other request with the same parameters
occurs before this time, the response will be
returned from the cache. A new day starts
at 00:00:00.

• monthly,hh:mm:ss,d: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the dth
day of month is reached. If an other request
with the same parameters occurs before this
time, the response will be returned from the
cache. A new day starts at 00:00:00.

Notes:
• The Response lifetime property editor

proposes a Generator tool that can help you
configure the Response lifetime setting.

• The Variable objects contain the Cache key
property that allows to specify to use this
variable as a key to the cache or not. See
Variable objects documentation for more
information.

Response timeout long standard Defines the response maximum waiting time (in
seconds).
Maximum time (in seconds) for a transaction/
sequence to run. When specified time is reached,
the transaction/sequence ends and returns a
timeout error. If requested through the SOAP
interface, the error is returned as a SOAP
exception.

Property Type Category Description
2 - 338 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SAP
Secure connection
required

boolean expert Defines whether the transaction/sequence
should be called through a secured connection
(e.g. HTTPS).
Depending on the requester, if this property is set
to true, the transaction/sequence must be
accessed through a secure connection (e.g.
HTTPS in case of HTTP access). Default value is
false for a standard access to transactions/
sequences.

Style sheet int standard Defines how the XML returned by the transaction
has to be processed by XSLT.
This property can take the following values:
• None: Do not process with XSLT. Usual

setting for web services (SOAP or REST)
where plain XML data is to be returned.

• From transaction: Use the XSL style
sheet attached to the transaction. When
used, make sure a style sheet object is
added to the transaction.

• From last detected screen class:
Use XSL style sheet attached to the last
detected screen class (in case of a
transaction with screen classes).

Transactions using sheets from last detected
screen class are mainly used in Web Clipping or
Legacy Publishing projects.

XML attributes to
include

boolean[] standard Defines, when applicable, the XML attributes to
be included in the generated XML document.
These attributes are:
• Definition attributes: name, type;
• Position attributes: line, column;
• Color attributes: foreground,

background;
• Decoration attributes: bold, underline,

reverse, blink;
• Optional attributes.

Property Type Category Description
2 - 339

Chapter "Convertigo Objects"
SAP
SAP LOGON TRANSACTION

OBJECT DESCRIPTION

Defines a SAP logon transaction.

A SAP logon transaction allows the developer to dynamically change SAP user credentials in

the parent SAP connector for current execution context.

A SAP logon transaction contains three pre-declared variables:

 jcoUser: this variable allows to override the User name property of the parent SAP

connector for current context,

 jcoPassword: this variable allows to override the User password property of the parent

SAP connector for current context,

 jcoClient: this variable allows to override the Client property of the parent SAP

connector for current context.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Accessibility Accessibility standard Defines the transaction/sequence accessibility.
This property can take the following values:
• Public: The transaction/sequence is

runnable from everyone and everywhere,
visible in the Test Platform and is also
exposed in the SOAP WSDL as a web
service method.

• Hidden: The transaction/sequence is
runnable but only from people who know the
execution URL, not visible in the Test
Platform nor exposed in the SOAP WSDL.

• Private: The transaction/sequence is only
runnable from within the Convertigo engine
(Call Transaction/(Call Sequence steps), is
not visible in the Test Platform and cannot be
requested as SOAP web service method.
This value is used for tests, unfinished
transactions/sequences or functionalities not
to be exposed. Private transactions/
sequences remain runnable in the Studio, for
the developer to be able to test its
developments.

Note: In the Test Platform:
• The administrator user (authenticated in

Administration Console or Test Platform) can
see and run all transactions / sequences, no
matter what their accessibility is.

• The test user (authenticated in the Test
Platform or in case of anonymous access)
can see and run public transactions/
sequences and run hidden ones if he knows
their execution URL.
2 - 340 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SAP
Add statistics to
response

boolean expert Defines whether some statistics of execution of
the transaction/sequence should be added as
data in the transaction/sequence's response.
If this property is set to true, the transaction/
sequence response will be enhanced with the
statistics data of its execution (total time for the
request, time spent waiting for the mainframe,
etc.).
Note: This property has nothing to do with the
general property of the Convertigo engine Insert
statistics in the generated document that can
be edited in the Configuration page of the
Administration Console.

Authenticated context
required

boolean expert Defines whether an authenticated context is
required to execute the transaction/sequence.
If this property is set to true, the context of
execution of the transaction/sequence must have
been authenticated. Otherwise, the transaction/
sequence is not executed. Default value is
false for a standard access to transactions/
sequences.
Notes:
• When a context is authenticated, all the

contexts in the same HTTP session are also
authenticated. For more information about
context and HTTP session, see Context
general presentation paragraph in JavaScript
Objects APIs chapter.

• When executing a transaction/sequence from
stub (__stub variable passed to true in
entry), this property is ignored. Indeed,
executing from stub is for testing purposes
and should not require any authentication:
the context would never be authenticated as
the transaction/sequence setting the context
as authenticated could also be executed from
stub.

Authenticated user as
cache key

boolean expert Defines whether the authenticated user should
be used as cache key.
When the cache is enabled (Response lifetime
setting filled with a time-to-live), the
Authenticated user as cache key property
allows to specify to use the authenticated user ID
from context/session as an additional key to the
cache.
It would have as effect that two different identified
users cannot retrieve the cached response of the
other for the same request. Default value is
false: the authenticated user is not used as
cache key.

Call the biller boolean expert Defines whether the billing management module
should be called for each generated XML
document.
If this property is set to true, the applicable
billing management module, defined thanks to
the connector's billing class name property, is
invoqued. This parameter should never be
changed (Convertigo private use only).

Character set String expert Defines the character set used for operations on
the generated XML document (default: UTF-8).

Property Type Category Description
2 - 341

Chapter "Convertigo Objects"
SAP
Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Include certificate
group

boolean expert Includes the certificate group into the cache key.
If set to true, the certificate group is added to
the cache key which is used to determine
whether the transaction's response should be
pulled from the cache or not.
A transaction's cached response is pulled from
the cache when all cache key values are
corresponding to a stored cache entry.

Response client
cache

boolean expert Defines whether the transaction/sequence
response should be cached by the client.
If set to false, the response XML is sent to the
client along with HTTP headers forcing the client
browser not to store it in its local cache. This is
the default value, since dynamic responses are
usually preferred. If set to true, the XML
response is sent normally.

Property Type Category Description
2 - 342 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SAP
Response lifetime String expert Defines the response time-to-live (in seconds) in
cache, i.e. the time during which the cached
response remains valid or time interval for its
renewal. This property enables the cache when
filled, disables the cache when left empty.
The Response lifetime property allows to
specify the cache settings for the transaction/
sequence's response. It can be set to the
following values:
• <empty>: Disables the cache for the

transaction/sequence. The response will not
be cached and each request will execute the
complete transaction. It is the default value.

• absolute,<time in secs>: Enables the
cache for the transaction/sequence. The
response will be cached for the time specified
in seconds. If an other request with the same
parameters occurs within this time, the
response will be returned from the cache.

• daily,hh:mm:ss: Enables the cache for
the transaction/sequence. The response will
be cached until hh:mm:ss of the current day
is reached. If an other request with the same
parameters occurs before this time, the
response will be returned from the cache. A
new day starts at 00:00:00.

• weekly,hh:mm:ss,w: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the wth
day of week is reached. For Sunday w = 1,
for Monday w = 2 ... and for Saturday w = 7. If
an other request with the same parameters
occurs before this time, the response will be
returned from the cache. A new day starts
at 00:00:00.

• monthly,hh:mm:ss,d: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the dth
day of month is reached. If an other request
with the same parameters occurs before this
time, the response will be returned from the
cache. A new day starts at 00:00:00.

Notes:
• The Response lifetime property editor

proposes a Generator tool that can help you
configure the Response lifetime setting.

• The Variable objects contain the Cache key
property that allows to specify to use this
variable as a key to the cache or not. See
Variable objects documentation for more
information.

Response timeout long standard Defines the response maximum waiting time (in
seconds).
Maximum time (in seconds) for a transaction/
sequence to run. When specified time is reached,
the transaction/sequence ends and returns a
timeout error. If requested through the SOAP
interface, the error is returned as a SOAP
exception.

Property Type Category Description
2 - 343

Chapter "Convertigo Objects"
SAP
Secure connection
required

boolean expert Defines whether the transaction/sequence
should be called through a secured connection
(e.g. HTTPS).
Depending on the requester, if this property is set
to true, the transaction/sequence must be
accessed through a secure connection (e.g.
HTTPS in case of HTTP access). Default value is
false for a standard access to transactions/
sequences.

Style sheet int standard Defines how the XML returned by the transaction
has to be processed by XSLT.
This property can take the following values:
• None: Do not process with XSLT. Usual

setting for web services (SOAP or REST)
where plain XML data is to be returned.

• From transaction: Use the XSL style
sheet attached to the transaction. When
used, make sure a style sheet object is
added to the transaction.

• From last detected screen class:
Use XSL style sheet attached to the last
detected screen class (in case of a
transaction with screen classes).

Transactions using sheets from last detected
screen class are mainly used in Web Clipping or
Legacy Publishing projects.

XML attributes to
include

boolean[] standard Defines, when applicable, the XML attributes to
be included in the generated XML document.
These attributes are:
• Definition attributes: name, type;
• Position attributes: line, column;
• Color attributes: foreground,

background;
• Decoration attributes: bold, underline,

reverse, blink;
• Optional attributes.

Property Type Category Description
2 - 344 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SQL
2.5 SQL
2 - 345

Chapter "Convertigo Objects"
SQL
2.5.1 Main objects
2 - 346 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SQL
SQL CONNECTOR

OBJECT DESCRIPTION

Establishes connections with an SQL database.

The SQL connector enables Convertigo to connect to any database and execute requests.

The access to the target database is configured using the Driver property and the Database

URL property. Credentials may be defined in the User name and the User password

properties, if required.

The SQL connector includes a connection pooling process that allows opening a certain

number of connections, defined by the Max. connections property, that are always ready to

execute the requests.

The pooled connections are by default kept opened after the transaction execution. This

behavior can be inverted using the Keep connection alive property.

The pooled connections can also be automatically tested before execution using the Test

connection property.

Idle connections can be detected and automatically reset using the Idle connection search

delay property.

The connection pool can be disabled using the Enable connection pool property.

A JDNI mode can also be selected, in the Driver property. In this case, the connection to the

database is made without using any JDBC driver nor connection pool.

Using JNDI mode, the connection to the database can be configured using a context.xml

file. This file is located in the <workspace_folder>/studio folder in Studio, or has to be

created in the <convertigo_webapp>/META-INF/ folder in Server.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Billing Java class String expert Defines the Java class name executed for billing
pruposes.
Convertigo supports a plugin architecture offering
billing functionalities. Set the name of the billing
class to be called by Convertigo for billing
purposes.

Carioca
authentication

boolean expert Defines whether the connector requires a
Carioca authentication.
Set to true if you require that only Carioca-
authenticated users be able to use this
connector.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 347

Chapter "Convertigo Objects"
SQL
Connection testing
query

String expert Defines the SQL query to execute to test the
connection to the database (optional).
The SQL connector connection pool needs to
check the validity of opened connections. This
optional property defines the SQL query to
execute on a new opened connection to check
the connection's validity.
If this property is left blank, Convertigo uses a
default SQL query to retrieve the list of the
database system tables, depending on the
chosen Driver:
• sun.jdbc.odbc.JdbcOdbcDriver:

SELECT 1 AS dbcp_connection_test.
• com.ibm.as400.access.AS400JDBCDrive

r: SELECT * FROM SYSIBM.SQLSCHEMAS
FETCH FIRST 1 ROWS ONLY.

• com.mysql.jdbc.Driver: SELECT *
FROM INFORMATION_SCHEMA.TABLES
LIMIT 1.

• net.sourceforge.jtds.jdbc.Driver:
SELECT TOP 1 * FROM
INFORMATION_SCHEMA.TABLES.

• org.hsqldb.jdbcDriver: SELECT TOP
1 * FROM
INFORMATION_SCHEMA.SYSTEM_TABLES.

• com.ibm.db2.jcc.DB2Driver: SELECT
* FROM SYSCAT.TABLES FETCH FIRST
1 ROWS.

• oracle.jdbc.driver.OracleDriver:
SELECT * FROM ALL_TABLES WHERE
ROWNUM <= 1.

• org.mariadb.jdbc.Driver needs a URL
of the form: SELECT * FROM
INFORMATION_SCHEMA.TABLES LIMIT 1.

• JNDI: SELECT 1 AS
dbcp_connection_test.

Property Type Category Description
2 - 348 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SQL
Database URL String standard Defines the database URL.
This property defines the URL needed to connect
to the database using the driver class. The
database URL syntax depends on the driver
class selected in Driver property:
• sun.jdbc.odbc.JdbcOdbcDriver needs

a URL of the form:
jdbc:odbc:<DSN(datasource_name)>.

• com.ibm.as400.access.AS400JDBCDrive
r needs a URL of the form: jdbc:as400://
<server_name>:<port(optional)>/
<default_schema>;<properties(opti
onal)>.

• com.mysql.jdbc.Driver needs a URL of
the form: jdbc:mysql://
<server_name>:<port(optional)>/
<database_name>.

• net.sourceforge.jtds.jdbc.Driver
needs a URL of the form:
jdbc:jtds:sqlserver://
<server_name>:<port(optional)>/
<database_name>.

• org.hsqldb.jdbcDriver needs a URL of
the form: jdbc:hsqldb:file:/
<file_path>/<database_name>.

• com.ibm.db2.jcc.DB2Driver needs a
URL of the form: jdbc:db2://
<server_name>:<port(optional)>/
<database_name>.

• oracle.jdbc.driver.OracleDriver
needs a URL of the form:
jdbc:oracle:<drivertype>:<usernam
e/password(optional)>@//
<host>:<port(optional)>/
<service>, see http://www.oracle.com/
technetwork/database/enterprise-edition/
jdbc-faq-090281.html#05_03 for Oracle
official documentation.

• org.mariadb.jdbc.Driver needs a URL
of the form: jdbc:mysql://
<server_name>:<port(optional)>/
<database_name>.

• JNDI needs a JNDI resource name: jdbc/
<resource_ref_name>.

Property Type Category Description
2 - 349

Chapter "Convertigo Objects"
SQL
Driver String standard Defines the JDBC driver class to use.
The following drivers can be selected:
• sun.jdbc.odbc.JdbcOdbcDriver:

JDBC-ODBC bridge for accessing ODBC
databases, for example Microsoft Access.

• com.ibm.as400.access.AS400JDBCDrive
r: IBM AS400 database.

• com.mysql.jdbc.Driver: MySQL
database.

• net.sourceforge.jtds.jdbc.Driver:
Microsoft SQL Server database.

• org.hsqldb.jdbcDriver: HSQLDB
database (one is included in the Studio for
demos and samples).

• com.ibm.db2.jcc.DB2Driver: IBM DB2
Server database.

• oracle.jdbc.driver.OracleDriver:
ORACLE database.

• org.mariadb.jdbc.Driver: MariaDB
database, community-developed fork of
MySQL.

• JNDI: JNDI mode, not using any JDBC driver
nor the connection pooling process. When
using JNDI mode, the connection to the
database can be configured using a
context.xml file. This file is located in the
<workspace_folder>/studio folder in
Studio, or has to be created in the
<convertigo_webapp>/META-INF/
folder in Server.

Note: You can refer to appendix SQL drivers and
related jar files in the Operating Guide for more
information about driver classes and related jar
files.

Enable connection
pool

boolean expert Defines whether the connection pool is used or
not to access target database.
The SQL connector connection pool allows to
automatically pre-connect a pool of connections
to the target database. This property allows the
programmer to enable or disable the connection
pool.
If set to true, the connection pool is enabled and
connections are retrieved from the pool. If set to
false, the connection pool is disabled and
connections are created on-demand. Default
value is true.

End transaction String expert Defines the transaction to execute before
removing the context.
When a Convertigo context is removed, the
specified "End transaction" is executed. Place in
this transaction any clean up code, for example a
Logout transaction.

Idle connection
search delay

long expert Defines the number of seconds to wait between
searches for idle connections in the connection
pool (in seconds).
The SQL connector connection pool can
automatically search for idle connections and
remove them from the pool so they are re-
started. This property allows the programmer to
set a time delay between two searches.
Default value is 60 seconds. To disable the idle
connection search, set this value to 0.

Property Type Category Description
2 - 350 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SQL
Keep connection alive boolean expert Defines whether the connection to the database
should be maintained after a transaction
execution.
Due to the use of connection pool, the SQL
connector prevents database connections from
being closed after each transaction execution or
context end. This property set to false will force
the closure of a connection after a transaction
execution or a context end.

Max. connections int standard Defines the maximum number of connections
allowed in the connection pool to access the
target database.
The SQL connector connection pool opens in
parallel all connections to the target database.
This property defines the maximum number of
co-existing connections allowed for this
connector to connect to the target database.
For example, HSQLDB database included in
Studio only allows one connection.

Test connection boolean expert Defines whether the connection pool should test
or not the connection before providing it.
The SQL connector connection pool can test the
connection before providing it to the requesting
transaction for execution. This property allows
the programmer to enable or disable this
automatic check.
Default value is false, i.e. the automatic test of
each connection is disabled.

User name String standard Defines the user name needed for connecting to
the database.
This user must exist in the target database and
have sufficient authorizations to performs
requests executed by transactions.

User password String standard Defines the user password needed for
connecting to the database.
This password must correspond to user name
defined in the User name property.

Property Type Category Description
2 - 351

Chapter "Convertigo Objects"
SQL
SQL TRANSACTION

OBJECT DESCRIPTION

Defines an SQL transaction.

An SQL transaction allows Convertigo to execute a request on an SQL database, which is

accessed by the parent SQL connector.

An SQL transaction is always associated with an SQL query, or several SQL queries, defined

in the Query property. The query/queries can be dynamically configured using the

transaction's variables (see Query property description and Variable objects documentation).

In case of single query transaction, the SQL query is executed in auto-commit mode (no matter

what is set in Auto-commit property). The resultset is output in transaction's XML response in

an sql_output element. The data organization in the sql_output element depends on the

Output mode property.

In case of multiple queries, the several queries are sequentially executed, using auto-commit

mode defined in Auto-commit property. Each query's resultset is output in transaction's XML

response in sql_output elements. The data organization in sql_output elements depends

on the Output mode property and is the same for all queries of the transaction.

OBJECT PROPERTIES

The table below describes the object properties:
2 - 352 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SQL
Property Type Category Description

Accessibility Accessibility standard Defines the transaction/sequence accessibility.
This property can take the following values:
• Public: The transaction/sequence is

runnable from everyone and everywhere,
visible in the Test Platform and is also
exposed in the SOAP WSDL as a web
service method.

• Hidden: The transaction/sequence is
runnable but only from people who know the
execution URL, not visible in the Test
Platform nor exposed in the SOAP WSDL.

• Private: The transaction/sequence is only
runnable from within the Convertigo engine
(Call Transaction/(Call Sequence steps), is
not visible in the Test Platform and cannot be
requested as SOAP web service method.
This value is used for tests, unfinished
transactions/sequences or functionalities not
to be exposed. Private transactions/
sequences remain runnable in the Studio, for
the developer to be able to test its
developments.

Note: In the Test Platform:
• The administrator user (authenticated in

Administration Console or Test Platform) can
see and run all transactions / sequences, no
matter what their accessibility is.

• The test user (authenticated in the Test
Platform or in case of anonymous access)
can see and run public transactions/
sequences and run hidden ones if he knows
their execution URL.

Add statistics to
response

boolean expert Defines whether some statistics of execution of
the transaction/sequence should be added as
data in the transaction/sequence's response.
If this property is set to true, the transaction/
sequence response will be enhanced with the
statistics data of its execution (total time for the
request, time spent waiting for the mainframe,
etc.).
Note: This property has nothing to do with the
general property of the Convertigo engine Insert
statistics in the generated document that can
be edited in the Configuration page of the
Administration Console.
2 - 353

Chapter "Convertigo Objects"
SQL
Authenticated context
required

boolean expert Defines whether an authenticated context is
required to execute the transaction/sequence.
If this property is set to true, the context of
execution of the transaction/sequence must have
been authenticated. Otherwise, the transaction/
sequence is not executed. Default value is
false for a standard access to transactions/
sequences.
Notes:
• When a context is authenticated, all the

contexts in the same HTTP session are also
authenticated. For more information about
context and HTTP session, see Context
general presentation paragraph in JavaScript
Objects APIs chapter.

• When executing a transaction/sequence from
stub (__stub variable passed to true in
entry), this property is ignored. Indeed,
executing from stub is for testing purposes
and should not require any authentication:
the context would never be authenticated as
the transaction/sequence setting the context
as authenticated could also be executed from
stub.

Authenticated user as
cache key

boolean expert Defines whether the authenticated user should
be used as cache key.
When the cache is enabled (Response lifetime
setting filled with a time-to-live), the
Authenticated user as cache key property
allows to specify to use the authenticated user ID
from context/session as an additional key to the
cache.
It would have as effect that two different identified
users cannot retrieve the cached response of the
other for the same request. Default value is
false: the authenticated user is not used as
cache key.

Auto-commit int expert Defines the commit mode, to be automatic or not.
The Auto-commit property can take one of the
following values:
• enabled, after each query: auto-

commit is done after executing each query
from the Query property,

• enabled, once at the end: auto-
commit is done after executing all queries
from the Query property,

• disabled, manual commit: the
developer should program himself the
commits to the database thanks to COMMIT
statement.

Default value is enabled, after each
query, enabling auto-commit after each query
execution.
Notes:
• This property cannot be used when the

Query property contains one single query. In
this case, the auto-commit is always applied.

• Not all databases support "grouped
transactions" and "rollback". To use this
property, be sure that your target database
supports these features. Otherwise, the auto-
commit is always applied.

Property Type Category Description
2 - 354 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SQL
Call the biller boolean expert Defines whether the billing management module
should be called for each generated XML
document.
If this property is set to true, the applicable
billing management module, defined thanks to
the connector's billing class name property, is
invoqued. This parameter should never be
changed (Convertigo private use only).

Character set String expert Defines the character set used for operations on
the generated XML document (default: UTF-8).

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default XML column
tag name

String standard Defines the default column tag name to output in
XML response, depending on the Output mode
property.
This property allows to configure a tag name for
each column of result, depending on the Output
mode property.
Default value is column.

Default XML row tag
name

String standard Defines the default row tag name to output in
XML response, depending on the Output mode
property.
This property allows to configure a tag name for
each line of result, depending on the Output
mode property.
Default value is row.

Include certificate
group

boolean expert Includes the certificate group into the cache key.
If set to true, the certificate group is added to
the cache key which is used to determine
whether the transaction's response should be
pulled from the cache or not.
A transaction's cached response is pulled from
the cache when all cache key values are
corresponding to a stored cache entry.

Optional max number
of results

String expert Defines the maximum number of results returned
by the SQL query.
Setting this property automatically adds a LIMIT
xx at the end of the query before its execution on
the database. It allows limiting automatically the
number of results of every execution of one
query.
Notes:
• Beware that this property should be used

only when the target SQL database allows
the LIMIT keyword in the queries. To know
which type of database is accessed by the
transaction, refer to the Driver property of
parent SQL connector.

• Beware that this property cannot be used
when the Query property contains several
queries.

Property Type Category Description
2 - 355

Chapter "Convertigo Objects"
SQL
Output mode int expert Defines how the resulting XML is generated from
each SQL query result.
The Output mode property allows to change the
structure of generated XML for a same query
result. It can be set to one of the following values:
• RAW: generates a row element for each result

line, selected columns are added as
attributes named after the column names.
Note that as the columns are XML attributes,
they are sorted by alphabetical order under
the row element.

• AUTO: generates a mix of complex elements
and elements with attributes (interesting for
multi-table requests).

• ELEMENT: generates XML elements named
after table names, selected columns are
added as child XML elements named after
column name. In case of multi-table
requests, one row is a complex element
which depth depends on the number of
selected tables. Note that as the columns are
XML elements, they are sorted in the order
requested in the query and as the resultset
has returned data.

• ELEMENT_WITH_ATTRIBUTES: generates a
structure similar to the ELEMENT output mode
but with row and column tag names. Each
element (row or column) contains a name
attribute with the actual name of the selected
table or column (useful when table or column
names contain symbols not allowed in XML
tag names, or start by a number, etc.).

• FLAT_ELEMENT: generates a structure
similar to the RAW output mode but with
elements instead of attributes. Each result
line generates a row element, selected
columns are added as child XML elements
named after the column names. Note that as
the columns are XML elements, they are
sorted in the order requested in the query
and as the resultset has returned data.

Property Type Category Description
2 - 356 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SQL
Query String standard Defines the SQL query/queries to execute on the
target database.
The Query property allows to define an SQL
query or several SQL queries to be executed on
the target database. Any SQL query must be
written in accordance with the target database
tables and available functions and keywords
(depending on the parent SQL connector
configuration).
The SQL query/queries can be parameterized
with the transaction's variables, to be dynamically
configured at runtime with variable values. To
use a transaction variable in an SQL query, use
one of the following syntaxes in the query:
• {variable_name}: the simple-brace

notation - variable name surrounded by curly
braces - protects the SQL query from SQL
injections, i.e. only the first value represented
by the variable is used, discarding any further
content (SQL injection). It works so that the
variable only contains a value. This notation
can only be used inside the WHERE clause. If
you need to use a variable anywhere else
inside the SQL query, you should use the
double-brace notation.

• {{variable_name}}: the double-brace
notation - variable name surrounded by
double curly braces - does not protect the
SQL query from SQL injections, i.e. the
variable content can contain any content. If
the variable value contains a piece of SQL
query, it will not prevent the SQL query
execution. This may be useful when a whole
WHERE clause is computed outside the
transaction (at sequence level for example)
and passed as a variable to the SQL
transaction. It should also be used when
variables need to be used in the query
outside of the WHERE clause.

In the case of multiple SQL queries, they must be
separated by semicolons ';'.
Notes:
• In the case of single query, you cannot use

the Auto-commit property.
• In the case of multiple SQL queries, you

cannot use the Optional max number of
results property in this case.

Response client
cache

boolean expert Defines whether the transaction/sequence
response should be cached by the client.
If set to false, the response XML is sent to the
client along with HTTP headers forcing the client
browser not to store it in its local cache. This is
the default value, since dynamic responses are
usually preferred. If set to true, the XML
response is sent normally.

Property Type Category Description
2 - 357

Chapter "Convertigo Objects"
SQL
Response lifetime String expert Defines the response time-to-live (in seconds) in
cache, i.e. the time during which the cached
response remains valid or time interval for its
renewal. This property enables the cache when
filled, disables the cache when left empty.
The Response lifetime property allows to
specify the cache settings for the transaction/
sequence's response. It can be set to the
following values:
• <empty>: Disables the cache for the

transaction/sequence. The response will not
be cached and each request will execute the
complete transaction. It is the default value.

• absolute,<time in secs>: Enables the
cache for the transaction/sequence. The
response will be cached for the time specified
in seconds. If an other request with the same
parameters occurs within this time, the
response will be returned from the cache.

• daily,hh:mm:ss: Enables the cache for
the transaction/sequence. The response will
be cached until hh:mm:ss of the current day
is reached. If an other request with the same
parameters occurs before this time, the
response will be returned from the cache. A
new day starts at 00:00:00.

• weekly,hh:mm:ss,w: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the wth
day of week is reached. For Sunday w = 1,
for Monday w = 2 ... and for Saturday w = 7. If
an other request with the same parameters
occurs before this time, the response will be
returned from the cache. A new day starts
at 00:00:00.

• monthly,hh:mm:ss,d: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the dth
day of month is reached. If an other request
with the same parameters occurs before this
time, the response will be returned from the
cache. A new day starts at 00:00:00.

Notes:
• The Response lifetime property editor

proposes a Generator tool that can help you
configure the Response lifetime setting.

• The Variable objects contain the Cache key
property that allows to specify to use this
variable as a key to the cache or not. See
Variable objects documentation for more
information.

Response timeout long standard Defines the response maximum waiting time (in
seconds).
Maximum time (in seconds) for a transaction/
sequence to run. When specified time is reached,
the transaction/sequence ends and returns a
timeout error. If requested through the SOAP
interface, the error is returned as a SOAP
exception.

Property Type Category Description
2 - 358 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SQL
Secure connection
required

boolean expert Defines whether the transaction/sequence
should be called through a secured connection
(e.g. HTTPS).
Depending on the requester, if this property is set
to true, the transaction/sequence must be
accessed through a secure connection (e.g.
HTTPS in case of HTTP access). Default value is
false for a standard access to transactions/
sequences.

Style sheet int standard Defines how the XML returned by the transaction
has to be processed by XSLT.
This property can take the following values:
• None: Do not process with XSLT. Usual

setting for web services (SOAP or REST)
where plain XML data is to be returned.

• From transaction: Use the XSL style
sheet attached to the transaction. When
used, make sure a style sheet object is
added to the transaction.

• From last detected screen class:
Use XSL style sheet attached to the last
detected screen class (in case of a
transaction with screen classes).

Transactions using sheets from last detected
screen class are mainly used in Web Clipping or
Legacy Publishing projects.

XML attributes to
include

boolean[] standard Defines, when applicable, the XML attributes to
be included in the generated XML document.
These attributes are:
• Definition attributes: name, type;
• Position attributes: line, column;
• Color attributes: foreground,

background;
• Decoration attributes: bold, underline,

reverse, blink;
• Optional attributes.

XML grouping boolean expert Defines whether the resulting XML should be
grouped by elements.
Default value is false. Setting it to true
enables the grouping of XML elements in the
transaction's XML response. The behavior can
be different depending on the Output mode
property value.

Property Type Category Description
2 - 359

Chapter "Convertigo Objects"
CICS
2.6 CICS
2 - 360 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
CICS
2.6.1 Main objects
2 - 361

Chapter "Convertigo Objects"
CICS
CICS CONNECTOR

OBJECT DESCRIPTION

Establishes connections with a CICS application.

A CICS Transaction Gateway can host several servers running different applications. In a

CICS application, the display and business logics are usually managed in distinct programs.

Programs exchange input and output data through a memory pool called COMMAREA

(COMMON AREA). The COMMAREA is usually mapped by a definition of COBOL data

included in communicating programs. This definition can be stored in two ways:

 built in the source code of the CICS program,

 stored in a separate file, called copybook, that is copied when compiling.

From a Convertigo point of view, a CICS connector represents a gateway server.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Billing Java class String expert Defines the Java class name executed for billing
pruposes.
Convertigo supports a plugin architecture offering
billing functionalities. Set the name of the billing
class to be called by Convertigo for billing
purposes.

Carioca
authentication

boolean expert Defines whether the connector requires a
Carioca authentication.
Set to true if you require that only Carioca-
authenticated users be able to use this
connector.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

End transaction String expert Defines the transaction to execute before
removing the context.
When a Convertigo context is removed, the
specified "End transaction" is executed. Place in
this transaction any clean up code, for example a
Logout transaction.

Mainframe String standard Defines the mainframe name (or its IP address).

Port int standard Defines the server port number.

Server String standard Defines the server name (or its IP address).

User id String standard Defines the user identification for connecting to
the CICS server.

User password String standard Defines the user password for connecting to the
CICS server.
2 - 362 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
CICS
CICS TRANSACTION

OBJECT DESCRIPTION

Not yet documented.

For more information, do not hesitate to contact us in the forum in our Developer Network

website: http://www.convertigo.com/itcenter.html
2 - 363

Chapter "Convertigo Objects"
Web services
2.7 Web services
2 - 364 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
2.7.1 Main objects
2 - 365

Chapter "Convertigo Objects"
Web services
HTTP CONNECTOR

OBJECT DESCRIPTION

Establishes HTTP connections.

HTTP connections are needed by Convertigo for connecting to and communicating with

required HTTP servers. The HTTP connector is used to consume web services such as REST,

SOAP or JSON, as well as getting data using HTTP protocol.

To call a REST or SOAP web service, XML HTTP Transactions have to be used as these web

services are XML-based. To consume a JSON web service, JSON HTTP Transactions have

to be used as it performs the conversion from the JSON data to the transaction output XML.

To retrieve any other data in HTTP protocol (non XML-based REST web service, image or file

getting, etc.), standard HTTP Transaction has to be used as its response is text-based.

Note: HTTP connector supports OAuth authentication. To enable OAuth, you simply need to

provide four variables to any kind of HTTP transaction: __header_oAuthKey,

__header_oAuthSecret, __header_oAuthToken and

__header_oAuthTokenSecret. For more information about OAuth in HTTP connector,

refer to the following article in our Technical Blog: http://www.convertigo.com/en/how-to/

technical-blog/entry/using-oauth-with-convertigo-http-connector.html

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Authentication type Authentication
Mode

expert Defines the authentication type between basic
and NTLM authentications.
This property allows to define which type of
authentication has to be used for the HTTP
request. Default value is Basic.
If Basic/NTLM authentication user and Basic/
NTLM authentication password properties are
not filled, no authentication is performed.
Notes:
• If you are using basic authentication setting,

the target application should accept WWW-
Authenticate header.

• If you are using NTLM authentication setting,
do not forget to also fill the NTLM
authentication domain property.

Basic/NTLM
authentication
password

String expert Defines the user's password for basic or NTLM
authentication.
This property value is used as user password for
basic or NTLM authentication.
Notes:
• The type of authentication is chosen using

the Authentication type property.
• If you are using basic authentication setting,

the target application should accept WWW-
Authenticate header.

• If you are using NTLM authentication setting,
do not forget to also fill the NTLM
authentication domain property.
2 - 366 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Basic/NTLM
authentication user

String expert Defines the user name for basic or NTLM
authentication.
This property value is used as user name for
basic or NTLM authentication.
Notes:
• The type of authentication is chosen using

the Authentication type property.
• If you are using basic authentication setting,

the target application should accept WWW-
Authenticate header.

• If you are using NTLM authentication setting,
do not forget to also fill the NTLM
authentication domain property.

Billing Java class String expert Defines the Java class name executed for billing
pruposes.
Convertigo supports a plugin architecture offering
billing functionalities. Set the name of the billing
class to be called by Convertigo for billing
purposes.

Carioca
authentication

boolean expert Defines whether the connector requires a
Carioca authentication.
Set to true if you require that only Carioca-
authenticated users be able to use this
connector.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default URL charset
encoding

String expert Defines the default charset encoding to use for
the transactions variable values sent as
parameters in HTTP requests.
This property allows to define the charset
encoding used to URL-encode the parameter
values:
• GET parameters for the query string,
• POST parameters in case of application/

x-www-form-urlencoded content-type.
Default value is UTF-8.

End transaction String expert Defines the transaction to execute before
removing the context.
When a Convertigo context is removed, the
specified "End transaction" is executed. Place in
this transaction any clean up code, for example a
Logout transaction.

Property Type Category Description
2 - 367

Chapter "Convertigo Objects"
Web services
EXAMPLES

Let’s consider a company named Global Company delivering a Web service for its Human

HTTP headers
forwarding policy

XMLVector expert Defines the HTTP headers to forward and the
policy to use to forward them.
This property allows forwarding HTTP headers
from the client browser to the target application.
This property allows to define a list of HTTP
headers to forward and, for each header, the
forwarding policy to use. For each header, two
columns have to be set:
• Header name: defines the name of the

header to forward,
• Forwarding policy: defines how to replace

the header value when forwarding it.
This second property can take the following
values:
• Merge: If the forwarded header exists, its

value is merged with existing one. If the
forwarded header doesn't exist, it is added.

• Ignore: If the forwarded header exists, its
value is not replaced, it is ignored. If the
forwarded header doesn't exist, it is added.

• Replace: Replaces all headers without any
condition by forwarded values.

Note: A new HTTP header can be added to the
list using the blue keyboard icon. The HTTP
headers defined in the list can be ordered using
the arrow up and arrow down buttons, or deleted
using the red cross icon.

Is HTTPS boolean standard Defines whether the connection is secured
(HTTPS).
If set to true, the connection is SSL-based.
Make sure the target SSL port (usually 443) is
correctly set.

NTLM authentication
domain

String expert Defines the NTLM authentication domain in case
of NTLM authentication.
This property value is used as user domain for
NTLM authentication.
Notes:
• The type of authentication is chosen using

the Authentication type property.
• If you are using basic authentication setting,

this property does not need to be filled.

Port int standard Defines the server port.

Root path String standard Defines the root path.
This is the first URI requested by the HTTP
connector. Any other URI in the project is relative
to this URI.

Server String standard Defines the server name (or its IP address).
This property defines the DNS name or IP
address of the target application server.

Trust all certificates boolean standard Defines whether trusted certificates must be
checked.
In SSL mode, the server sends existing
certificates to Convertigo. In most cases, set this
setting to true to automatically trust all server
certificates. If set to false , target server
certificates must be installed in Convertigo.

Property Type Category Description
2 - 368 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Resources department.This is a sample Web service accessible in REST and SOAP modes

(developed thanks to Convertigo).

In this example, we want to define an HTTP connector, in a new project named

sample_refManual_http, for connecting to this sample Web service in REST.

An HTTP connector object is created with the following properties:

HTTP connector [

is HTTPs=true

server=demo.convertigo.net

port=443

root path=/cems/projects/globalCompany_HR_WS

trust all certificates=true

carioca authentication=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 182: HTTP connector - Configuration example

The connector is created in the Connectors folder of the project, including various other

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > HTTP connector objects examples in
the New Project wizard.
2 - 369

Chapter "Convertigo Objects"
Web services
objects, such as transactions. It appears as follows in the Projects view:

 Figure 2 - 183: HTTP connector - Object in Projects view

The HTTP connector editor displaying HTTP data and generated XML appears as follows:
2 - 370 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
 Figure 2 - 184: HTTP connector - Connector editor in Studio
2 - 371

Chapter "Convertigo Objects"
Web services
PROXY HTTP CONNECTOR

OBJECT DESCRIPTION

Defines a proxy-based HTTP connector.

The Proxy HTTP connector is similar to an HTTP connector and in addition simulates a proxy.

Note: This connector is used for very specific applications and is not intended to be used by

Convertigo standard users.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Authentication type Authentication
Mode

expert Defines the authentication type between basic
and NTLM authentications.
This property allows to define which type of
authentication has to be used for the HTTP
request. Default value is Basic.
If Basic/NTLM authentication user and Basic/
NTLM authentication password properties are
not filled, no authentication is performed.
Notes:
• If you are using basic authentication setting,

the target application should accept WWW-
Authenticate header.

• If you are using NTLM authentication setting,
do not forget to also fill the NTLM
authentication domain property.

Basic/NTLM
authentication
password

String expert Defines the user's password for basic or NTLM
authentication.
This property value is used as user password for
basic or NTLM authentication.
Notes:
• The type of authentication is chosen using

the Authentication type property.
• If you are using basic authentication setting,

the target application should accept WWW-
Authenticate header.

• If you are using NTLM authentication setting,
do not forget to also fill the NTLM
authentication domain property.

Basic/NTLM
authentication user

String expert Defines the user name for basic or NTLM
authentication.
This property value is used as user name for
basic or NTLM authentication.
Notes:
• The type of authentication is chosen using

the Authentication type property.
• If you are using basic authentication setting,

the target application should accept WWW-
Authenticate header.

• If you are using NTLM authentication setting,
do not forget to also fill the NTLM
authentication domain property.
2 - 372 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Billing Java class String expert Defines the Java class name executed for billing
pruposes.
Convertigo supports a plugin architecture offering
billing functionalities. Set the name of the billing
class to be called by Convertigo for billing
purposes.

Carioca
authentication

boolean expert Defines whether the connector requires a
Carioca authentication.
Set to true if you require that only Carioca-
authenticated users be able to use this
connector.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default URL charset
encoding

String expert Defines the default charset encoding to use for
the transactions variable values sent as
parameters in HTTP requests.
This property allows to define the charset
encoding used to URL-encode the parameter
values:
• GET parameters for the query string,
• POST parameters in case of application/

x-www-form-urlencoded content-type.
Default value is UTF-8.

Dynamic content files String standard Defines files exposing dynamic content (should
not be cached).
This property allows to specify the files that
should not be cached by the Proxy HTTP
connector.

End transaction String expert Defines the transaction to execute before
removing the context.
When a Convertigo context is removed, the
specified "End transaction" is executed. Place in
this transaction any clean up code, for example a
Logout transaction.

Property Type Category Description
2 - 373

Chapter "Convertigo Objects"
Web services
HTTP headers
forwarding policy

XMLVector expert Defines the HTTP headers to forward and the
policy to use to forward them.
This property allows forwarding HTTP headers
from the client browser to the target application.
This property allows to define a list of HTTP
headers to forward and, for each header, the
forwarding policy to use. For each header, two
columns have to be set:
• Header name: defines the name of the

header to forward,
• Forwarding policy: defines how to replace

the header value when forwarding it.
This second property can take the following
values:
• Merge: If the forwarded header exists, its

value is merged with existing one. If the
forwarded header doesn't exist, it is added.

• Ignore: If the forwarded header exists, its
value is not replaced, it is ignored. If the
forwarded header doesn't exist, it is added.

• Replace: Replaces all headers without any
condition by forwarded values.

Note: A new HTTP header can be added to the
list using the blue keyboard icon. The HTTP
headers defined in the list can be ordered using
the arrow up and arrow down buttons, or deleted
using the red cross icon.

Is HTTPS boolean standard Defines whether the connection is secured
(HTTPS).
If set to true, the connection is SSL-based.
Make sure the target SSL port (usually 443) is
correctly set.

NTLM authentication
domain

String expert Defines the NTLM authentication domain in case
of NTLM authentication.
This property value is used as user domain for
NTLM authentication.
Notes:
• The type of authentication is chosen using

the Authentication type property.
• If you are using basic authentication setting,

this property does not need to be filled.

Port int standard Defines the server port.

Removable headers XMLVector standard Defines HTTP headers that should be removed
from client request.
This property allows to specify a list of HTTP
headers that should not be forwarded by the
Proxy HTTP connector to the target application.
Note: A new HTTP header can be added to the
list using the blue keyboard icon. The HTTP
headers defined in the list can be ordered using
the arrow up and arrow down buttons, or deleted
using the red cross icon.

Replacement strings XMLVector standard Defines strings to be replaced on the fly.
As simulating a proxy, the Proxy HTTP connector
replaces "on-the-fly" strings in the HTTP flow.
This property allows to specify the strings to
replace and their replacements.
Note: A new string can be added to the list using
the blue keyboard icon. The strings defined in the
list can be ordered using the arrow up and arrow
down buttons, or deleted using the red cross
icon.

Property Type Category Description
2 - 374 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Root path String standard Defines the root path.
This is the first URI requested by the HTTP
connector. Any other URI in the project is relative
to this URI.

Server String standard Defines the server name (or its IP address).
This property defines the DNS name or IP
address of the target application server.

Trust all certificates boolean standard Defines whether trusted certificates must be
checked.
In SSL mode, the server sends existing
certificates to Convertigo. In most cases, set this
setting to true to automatically trust all server
certificates. If set to false , target server
certificates must be installed in Convertigo.

Property Type Category Description
2 - 375

Chapter "Convertigo Objects"
Web services
HTTP TRANSACTION

OBJECT DESCRIPTION

Defines an HTTP transaction.

An HTTP transaction is a Convertigo transaction based on HTTP requests. It allows to perform

an HTTP request and get the response back.

Unlike XML HTTP transaction or JSON HTTP transaction, simple HTTP transaction receives

text-based HTTP responses. It is used to retrieve any data in HTTP protocol (non XML-based

REST web service, image or file getting, etc.).

Note: HTTP connector supports OAuth authentication. To enable OAuth, you simply need to

provide four variables to any kind of HTTP transaction: __header_oAuthKey,

__header_oAuthSecret, __header_oAuthToken and

__header_oAuthTokenSecret. For more information about OAuth in HTTP connector,

refer to the following article in our Technical Blog: http://www.convertigo.com/en/how-to/

technical-blog/entry/using-oauth-with-convertigo-http-connector.html

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Accessibility Accessibility standard Defines the transaction/sequence accessibility.
This property can take the following values:
• Public: The transaction/sequence is

runnable from everyone and everywhere,
visible in the Test Platform and is also
exposed in the SOAP WSDL as a web
service method.

• Hidden: The transaction/sequence is
runnable but only from people who know the
execution URL, not visible in the Test
Platform nor exposed in the SOAP WSDL.

• Private: The transaction/sequence is only
runnable from within the Convertigo engine
(Call Transaction/(Call Sequence steps), is
not visible in the Test Platform and cannot be
requested as SOAP web service method.
This value is used for tests, unfinished
transactions/sequences or functionalities not
to be exposed. Private transactions/
sequences remain runnable in the Studio, for
the developer to be able to test its
developments.

Note: In the Test Platform:
• The administrator user (authenticated in

Administration Console or Test Platform) can
see and run all transactions / sequences, no
matter what their accessibility is.

• The test user (authenticated in the Test
Platform or in case of anonymous access)
can see and run public transactions/
sequences and run hidden ones if he knows
their execution URL.
2 - 376 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Add statistics to
response

boolean expert Defines whether some statistics of execution of
the transaction/sequence should be added as
data in the transaction/sequence's response.
If this property is set to true, the transaction/
sequence response will be enhanced with the
statistics data of its execution (total time for the
request, time spent waiting for the mainframe,
etc.).
Note: This property has nothing to do with the
general property of the Convertigo engine Insert
statistics in the generated document that can
be edited in the Configuration page of the
Administration Console.

Authenticated context
required

boolean expert Defines whether an authenticated context is
required to execute the transaction/sequence.
If this property is set to true, the context of
execution of the transaction/sequence must have
been authenticated. Otherwise, the transaction/
sequence is not executed. Default value is
false for a standard access to transactions/
sequences.
Notes:
• When a context is authenticated, all the

contexts in the same HTTP session are also
authenticated. For more information about
context and HTTP session, see Context
general presentation paragraph in JavaScript
Objects APIs chapter.

• When executing a transaction/sequence from
stub (__stub variable passed to true in
entry), this property is ignored. Indeed,
executing from stub is for testing purposes
and should not require any authentication:
the context would never be authenticated as
the transaction/sequence setting the context
as authenticated could also be executed from
stub.

Authenticated user as
cache key

boolean expert Defines whether the authenticated user should
be used as cache key.
When the cache is enabled (Response lifetime
setting filled with a time-to-live), the
Authenticated user as cache key property
allows to specify to use the authenticated user ID
from context/session as an additional key to the
cache.
It would have as effect that two different identified
users cannot retrieve the cached response of the
other for the same request. Default value is
false: the authenticated user is not used as
cache key.

Call the biller boolean expert Defines whether the billing management module
should be called for each generated XML
document.
If this property is set to true, the applicable
billing management module, defined thanks to
the connector's billing class name property, is
invoqued. This parameter should never be
changed (Convertigo private use only).

Character set String expert Defines the character set used for operations on
the generated XML document (default: UTF-8).

Property Type Category Description
2 - 377

Chapter "Convertigo Objects"
Web services
Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

HTTP data encoding int standard Defines the data encoding to use for encoding
the data received through the HTTP connector.
HTTP data retrieved through the HTTP connector
can be one of of the following types:
• string type: string data are not encoded,
• binary type: binary data are encoded in

Base64.

HTTP headers XMLVector expert Defines HTTP headers to be sent.
This property allows to define the request Header
Fields to be sent with the request to the target
web service method.
For each header, two columns have to be set:
• Variable: HTTP header name (ex:

Content-Type).
• Value: HTTP header value (ex:

application/x-www-from-
urlencoded).

Note: A new HTTP header can be added to the
list using the blue keyboard icon. The HTTP
headers defined in the list can be ordered using
the arrow up and arrow down buttons, or deleted
using the red cross icon.

HTTP info boolean expert Defines whether to include HTTP information in
output XML.
HTTP information can be added to the
transaction's output XML, such as the request
URL, HTTP status code and the HTTP request
and response headers. You can also have the
raw HTTP data in case of error.
The HTTP info property allows to define whether
these information have to be inserted in the
transaction's output XML (value set to true) or
not (value set to false).
Default value is false.

HTTP info tagname String expert Defines the tagname of the element containing
the HTTP info in output XML.
When the HTTP info property defines to insert
the HTTP information in the transaction's output
XML, the HTTP info tagname property allows
the programmer to define the tagname of the
element containing these information.
Default value is HttpInfo.

HTTP verb int standard Defines the HTTP verb to use for this HTTP
request: GET, POST, PUT, DELETE, HEAD, TRACE,
OPTIONS or CONNECT.
For more information about HTTP verbs, you can
visit the following RFC page: http://www.w3.org/
Protocols/rfc2616/rfc2616-sec9.html.

Handles cookies boolean expert Defines whether cookies must be handled.
If set to true (default value), the transaction
maintains cookies in Convertigo's context.
Default value should not be changed unless you
specifically want the transaction to ignore cookies
while browsing.

Property Type Category Description
2 - 378 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Include certificate
group

boolean expert Includes the certificate group into the cache key.
If set to true, the certificate group is added to
the cache key which is used to determine
whether the transaction's response should be
pulled from the cache or not.
A transaction's cached response is pulled from
the cache when all cache key values are
corresponding to a stored cache entry.

Request template String expert Defines the request body template file path.
HTTP request sent by the transaction can contain
data in its body. This data is based on a user-
defined template file, which can be:
• an XML file describing the content of the

HTTP request body, possibly including
transaction input variables in the data
structure,

• an XSL file used to transform the variable-
based transaction input XML to generate the
content of the HTTP request body.

This property allows to define the path of the
template file, it is either:
• a local file, by default relative to the project's

directory, or to the project's current subfolder,
• a local file relative to the Convertigo webapp

common templates directory,
• an absolute path.
If the template file is an XML file, it can contain
transaction variables identified with a specific
syntax in the XML and dynamically replaced at
runtime with received variable values.
The syntax to use in the XML template file to
refer to a transaction variable is the following:
• $(<variableHttpName>): this simple

notation starts with a $ character and then
includes between brackets the HTTP name
of the variable. Beware that the HTTP name
of the variable can be different from the
variable name (see Variable objects
documentation).

• $(<variableHttpName>)concat: this
notation is very similar to the preceding,
excepted that the last bracket is followed by
the concat keyword. It starts by a $
character and includes between brackets the
HTTP name of the variable, that should be in
this case a Multi-valued variable. The
concat keyword implies that all values
received in the Multi-valued variable must be
concatenated before replacing this notation
by this computed value in the template XML.

• $(<variableHttpName>): this notation is
identical to the first notation, but the behavior
is different for a Multi-valued variable. The
tag surrounding this notation in the template
XML is duplicated for each value in the Multi-
valued variable.

Response client
cache

boolean expert Defines whether the transaction/sequence
response should be cached by the client.
If set to false, the response XML is sent to the
client along with HTTP headers forcing the client
browser not to store it in its local cache. This is
the default value, since dynamic responses are
usually preferred. If set to true, the XML
response is sent normally.

Property Type Category Description
2 - 379

Chapter "Convertigo Objects"
Web services
Response lifetime String expert Defines the response time-to-live (in seconds) in
cache, i.e. the time during which the cached
response remains valid or time interval for its
renewal. This property enables the cache when
filled, disables the cache when left empty.
The Response lifetime property allows to
specify the cache settings for the transaction/
sequence's response. It can be set to the
following values:
• <empty>: Disables the cache for the

transaction/sequence. The response will not
be cached and each request will execute the
complete transaction. It is the default value.

• absolute,<time in secs>: Enables the
cache for the transaction/sequence. The
response will be cached for the time specified
in seconds. If an other request with the same
parameters occurs within this time, the
response will be returned from the cache.

• daily,hh:mm:ss: Enables the cache for
the transaction/sequence. The response will
be cached until hh:mm:ss of the current day
is reached. If an other request with the same
parameters occurs before this time, the
response will be returned from the cache. A
new day starts at 00:00:00.

• weekly,hh:mm:ss,w: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the wth
day of week is reached. For Sunday w = 1,
for Monday w = 2 ... and for Saturday w = 7. If
an other request with the same parameters
occurs before this time, the response will be
returned from the cache. A new day starts
at 00:00:00.

• monthly,hh:mm:ss,d: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the dth
day of month is reached. If an other request
with the same parameters occurs before this
time, the response will be returned from the
cache. A new day starts at 00:00:00.

Notes:
• The Response lifetime property editor

proposes a Generator tool that can help you
configure the Response lifetime setting.

• The Variable objects contain the Cache key
property that allows to specify to use this
variable as a key to the cache or not. See
Variable objects documentation for more
information.

Response timeout long standard Defines the response maximum waiting time (in
seconds).
Maximum time (in seconds) for a transaction/
sequence to run. When specified time is reached,
the transaction/sequence ends and returns a
timeout error. If requested through the SOAP
interface, the error is returned as a SOAP
exception.

Property Type Category Description
2 - 380 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Secure connection
required

boolean expert Defines whether the transaction/sequence
should be called through a secured connection
(e.g. HTTPS).
Depending on the requester, if this property is set
to true, the transaction/sequence must be
accessed through a secure connection (e.g.
HTTPS in case of HTTP access). Default value is
false for a standard access to transactions/
sequences.

Style sheet int standard Defines how the XML returned by the transaction
has to be processed by XSLT.
This property can take the following values:
• None: Do not process with XSLT. Usual

setting for web services (SOAP or REST)
where plain XML data is to be returned.

• From transaction: Use the XSL style
sheet attached to the transaction. When
used, make sure a style sheet object is
added to the transaction.

• From last detected screen class:
Use XSL style sheet attached to the last
detected screen class (in case of a
transaction with screen classes).

Transactions using sheets from last detected
screen class are mainly used in Web Clipping or
Legacy Publishing projects.

Sub path String standard Defines the end of the path for the HTTP
connection.
This property allows to define the sub path,
relative to the connector root path, to the target
web service URI.
For example, if the target is: http://server/
MyApp/targetpage.jsp, the connector server
would be: server, the connector root path: /
MyApp and the transaction sub path: /
targetpage.jsp.

URL charset
encoding

String expert Defines the charset encoding to use for the
variable values sent as parameters in HTTP
request.
This property allows to define the charset
encoding used to URL-encode the parameter
values:
• GET parameters for the query string,
• POST parameters in case of application/

x-www-form-urlencoded content-type.
Default value is blank. If blank, the parent
connector's Default URL charset encoding
property value is used.

XML attributes to
include

boolean[] standard Defines, when applicable, the XML attributes to
be included in the generated XML document.
These attributes are:
• Definition attributes: name, type;
• Position attributes: line, column;
• Color attributes: foreground,

background;
• Decoration attributes: bold, underline,

reverse, blink;
• Optional attributes.

Property Type Category Description
2 - 381

Chapter "Convertigo Objects"
Web services
XML HTTP TRANSACTION

OBJECT DESCRIPTION

Defines an XML-based HTTP transaction.

An XML HTTP transaction is an HTTP transaction, allowing to perform an HTTP request and

get the response back, for which responses are XML-based. It is used to call a REST or SOAP

web service which responses are XML-based.

Note: HTTP connector supports OAuth authentication. To enable OAuth, you simply need to

provide four variables to any kind of HTTP transaction: __header_oAuthKey,

__header_oAuthSecret, __header_oAuthToken and

__header_oAuthTokenSecret. For more information about OAuth in HTTP connector,

refer to the following article in our Technical Blog: http://www.convertigo.com/en/how-to/

technical-blog/entry/using-oauth-with-convertigo-http-connector.html

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Accessibility Accessibility standard Defines the transaction/sequence accessibility.
This property can take the following values:
• Public: The transaction/sequence is

runnable from everyone and everywhere,
visible in the Test Platform and is also
exposed in the SOAP WSDL as a web
service method.

• Hidden: The transaction/sequence is
runnable but only from people who know the
execution URL, not visible in the Test
Platform nor exposed in the SOAP WSDL.

• Private: The transaction/sequence is only
runnable from within the Convertigo engine
(Call Transaction/(Call Sequence steps), is
not visible in the Test Platform and cannot be
requested as SOAP web service method.
This value is used for tests, unfinished
transactions/sequences or functionalities not
to be exposed. Private transactions/
sequences remain runnable in the Studio, for
the developer to be able to test its
developments.

Note: In the Test Platform:
• The administrator user (authenticated in

Administration Console or Test Platform) can
see and run all transactions / sequences, no
matter what their accessibility is.

• The test user (authenticated in the Test
Platform or in case of anonymous access)
can see and run public transactions/
sequences and run hidden ones if he knows
their execution URL.
2 - 382 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Add statistics to
response

boolean expert Defines whether some statistics of execution of
the transaction/sequence should be added as
data in the transaction/sequence's response.
If this property is set to true, the transaction/
sequence response will be enhanced with the
statistics data of its execution (total time for the
request, time spent waiting for the mainframe,
etc.).
Note: This property has nothing to do with the
general property of the Convertigo engine Insert
statistics in the generated document that can
be edited in the Configuration page of the
Administration Console.

Assigned element
QName

XmlQName expert The schema element qualified name of the
targeted web service to be referenced in the
Convertigo SOAP response element. |

Authenticated context
required

boolean expert Defines whether an authenticated context is
required to execute the transaction/sequence.
If this property is set to true, the context of
execution of the transaction/sequence must have
been authenticated. Otherwise, the transaction/
sequence is not executed. Default value is
false for a standard access to transactions/
sequences.
Notes:
• When a context is authenticated, all the

contexts in the same HTTP session are also
authenticated. For more information about
context and HTTP session, see Context
general presentation paragraph in JavaScript
Objects APIs chapter.

• When executing a transaction/sequence from
stub (__stub variable passed to true in
entry), this property is ignored. Indeed,
executing from stub is for testing purposes
and should not require any authentication:
the context would never be authenticated as
the transaction/sequence setting the context
as authenticated could also be executed from
stub.

Authenticated user as
cache key

boolean expert Defines whether the authenticated user should
be used as cache key.
When the cache is enabled (Response lifetime
setting filled with a time-to-live), the
Authenticated user as cache key property
allows to specify to use the authenticated user ID
from context/session as an additional key to the
cache.
It would have as effect that two different identified
users cannot retrieve the cached response of the
other for the same request. Default value is
false: the authenticated user is not used as
cache key.

Call the biller boolean expert Defines whether the billing management module
should be called for each generated XML
document.
If this property is set to true, the applicable
billing management module, defined thanks to
the connector's billing class name property, is
invoqued. This parameter should never be
changed (Convertigo private use only).

Property Type Category Description
2 - 383

Chapter "Convertigo Objects"
Web services
Character set String expert Defines the character set used for operations on
the generated XML document (default: UTF-8).

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

HTTP headers XMLVector expert Defines HTTP headers to be sent.
This property allows to define the request Header
Fields to be sent with the request to the target
web service method.
For each header, two columns have to be set:
• Variable: HTTP header name (ex:

Content-Type).
• Value: HTTP header value (ex:

application/x-www-from-
urlencoded).

Note: A new HTTP header can be added to the
list using the blue keyboard icon. The HTTP
headers defined in the list can be ordered using
the arrow up and arrow down buttons, or deleted
using the red cross icon.

HTTP info boolean expert Defines whether to include HTTP information in
output XML.
HTTP information can be added to the
transaction's output XML, such as the request
URL, HTTP status code and the HTTP request
and response headers. You can also have the
raw HTTP data in case of error.
The HTTP info property allows to define whether
these information have to be inserted in the
transaction's output XML (value set to true) or
not (value set to false).
Default value is false.

HTTP info tagname String expert Defines the tagname of the element containing
the HTTP info in output XML.
When the HTTP info property defines to insert
the HTTP information in the transaction's output
XML, the HTTP info tagname property allows
the programmer to define the tagname of the
element containing these information.
Default value is HttpInfo.

HTTP verb int standard Defines the HTTP verb to use for this HTTP
request: GET, POST, PUT, DELETE, HEAD, TRACE,
OPTIONS or CONNECT.
For more information about HTTP verbs, you can
visit the following RFC page: http://www.w3.org/
Protocols/rfc2616/rfc2616-sec9.html.

Handles cookies boolean expert Defines whether cookies must be handled.
If set to true (default value), the transaction
maintains cookies in Convertigo's context.
Default value should not be changed unless you
specifically want the transaction to ignore cookies
while browsing.

Ignore SOAP
envelope

boolean expert Defines whether the response SOAP envelope
elements should be removed from the
transaction XML response.
If set to true (default value), the SOAP envelope
elements of the HTTP response are not kept in
the transaction output XML.
If set to false, the SOAP envelope XML
elements are kept in the transaction output XML.

Property Type Category Description
2 - 384 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Include certificate
group

boolean expert Includes the certificate group into the cache key.
If set to true, the certificate group is added to
the cache key which is used to determine
whether the transaction's response should be
pulled from the cache or not.
A transaction's cached response is pulled from
the cache when all cache key values are
corresponding to a stored cache entry.

Request template String expert Defines the request body template file path.
HTTP request sent by the transaction can contain
data in its body. This data is based on a user-
defined template file, which can be:
• an XML file describing the content of the

HTTP request body, possibly including
transaction input variables in the data
structure,

• an XSL file used to transform the variable-
based transaction input XML to generate the
content of the HTTP request body.

This property allows to define the path of the
template file, it is either:
• a local file, by default relative to the project's

directory, or to the project's current subfolder,
• a local file relative to the Convertigo webapp

common templates directory,
• an absolute path.
If the template file is an XML file, it can contain
transaction variables identified with a specific
syntax in the XML and dynamically replaced at
runtime with received variable values.
The syntax to use in the XML template file to
refer to a transaction variable is the following:
• $(<variableHttpName>): this simple

notation starts with a $ character and then
includes between brackets the HTTP name
of the variable. Beware that the HTTP name
of the variable can be different from the
variable name (see Variable objects
documentation).

• $(<variableHttpName>)concat: this
notation is very similar to the preceding,
excepted that the last bracket is followed by
the concat keyword. It starts by a $
character and includes between brackets the
HTTP name of the variable, that should be in
this case a Multi-valued variable. The
concat keyword implies that all values
received in the Multi-valued variable must be
concatenated before replacing this notation
by this computed value in the template XML.

• $(<variableHttpName>): this notation is
identical to the first notation, but the behavior
is different for a Multi-valued variable. The
tag surrounding this notation in the template
XML is duplicated for each value in the Multi-
valued variable.

Response client
cache

boolean expert Defines whether the transaction/sequence
response should be cached by the client.
If set to false, the response XML is sent to the
client along with HTTP headers forcing the client
browser not to store it in its local cache. This is
the default value, since dynamic responses are
usually preferred. If set to true, the XML
response is sent normally.

Property Type Category Description
2 - 385

Chapter "Convertigo Objects"
Web services
Response lifetime String expert Defines the response time-to-live (in seconds) in
cache, i.e. the time during which the cached
response remains valid or time interval for its
renewal. This property enables the cache when
filled, disables the cache when left empty.
The Response lifetime property allows to
specify the cache settings for the transaction/
sequence's response. It can be set to the
following values:
• <empty>: Disables the cache for the

transaction/sequence. The response will not
be cached and each request will execute the
complete transaction. It is the default value.

• absolute,<time in secs>: Enables the
cache for the transaction/sequence. The
response will be cached for the time specified
in seconds. If an other request with the same
parameters occurs within this time, the
response will be returned from the cache.

• daily,hh:mm:ss: Enables the cache for
the transaction/sequence. The response will
be cached until hh:mm:ss of the current day
is reached. If an other request with the same
parameters occurs before this time, the
response will be returned from the cache. A
new day starts at 00:00:00.

• weekly,hh:mm:ss,w: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the wth
day of week is reached. For Sunday w = 1,
for Monday w = 2 ... and for Saturday w = 7. If
an other request with the same parameters
occurs before this time, the response will be
returned from the cache. A new day starts
at 00:00:00.

• monthly,hh:mm:ss,d: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the dth
day of month is reached. If an other request
with the same parameters occurs before this
time, the response will be returned from the
cache. A new day starts at 00:00:00.

Notes:
• The Response lifetime property editor

proposes a Generator tool that can help you
configure the Response lifetime setting.

• The Variable objects contain the Cache key
property that allows to specify to use this
variable as a key to the cache or not. See
Variable objects documentation for more
information.

Response timeout long standard Defines the response maximum waiting time (in
seconds).
Maximum time (in seconds) for a transaction/
sequence to run. When specified time is reached,
the transaction/sequence ends and returns a
timeout error. If requested through the SOAP
interface, the error is returned as a SOAP
exception.

Property Type Category Description
2 - 386 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Schema of
response's RPC call

String expert Defines the schema of the RPC call response.
Only used in case of auto-generated transaction
when importing a WSDL.
When importing a remote web service thanks to
its WSDL to create a project, each transaction
allows invoking a method of the target web
service. Each method already has a schema
defined in the web service. This property allows
to reference the name of this schema type to
reuse it in transaction output XML schema.
We advise not to manually update this property
has it is mainly used for automatically created
transactions.

Secure connection
required

boolean expert Defines whether the transaction/sequence
should be called through a secured connection
(e.g. HTTPS).
Depending on the requester, if this property is set
to true, the transaction/sequence must be
accessed through a secure connection (e.g.
HTTPS in case of HTTP access). Default value is
false for a standard access to transactions/
sequences.

Style sheet int standard Defines how the XML returned by the transaction
has to be processed by XSLT.
This property can take the following values:
• None: Do not process with XSLT. Usual

setting for web services (SOAP or REST)
where plain XML data is to be returned.

• From transaction: Use the XSL style
sheet attached to the transaction. When
used, make sure a style sheet object is
added to the transaction.

• From last detected screen class:
Use XSL style sheet attached to the last
detected screen class (in case of a
transaction with screen classes).

Transactions using sheets from last detected
screen class are mainly used in Web Clipping or
Legacy Publishing projects.

Sub path String standard Defines the end of the path for the HTTP
connection.
This property allows to define the sub path,
relative to the connector root path, to the target
web service URI.
For example, if the target is: http://server/
MyApp/targetpage.jsp, the connector server
would be: server, the connector root path: /
MyApp and the transaction sub path: /
targetpage.jsp.

URL charset
encoding

String expert Defines the charset encoding to use for the
variable values sent as parameters in HTTP
request.
This property allows to define the charset
encoding used to URL-encode the parameter
values:
• GET parameters for the query string,
• POST parameters in case of application/

x-www-form-urlencoded content-type.
Default value is blank. If blank, the parent
connector's Default URL charset encoding
property value is used.

Property Type Category Description
2 - 387

Chapter "Convertigo Objects"
Web services
EXAMPLES

Let’s consider a company named Global Company delivering a Web service for its Human

Resources department.This is a sample Web service accessible in REST and SOAP modes

(developed thanks to Convertigo).

We defined an HTTP connector, in a project named sample_refManual_http, for

connecting to this sample Web service in REST (for more information, see HTTP connector

documentation and examples). In this example, we are focusing on the transactions created

to call the methods of this Web service in XML.

Several XML HTTP transaction objects are created to call the different methods of the target

Web service in XML. For example, one transaction, defined to call the getDepartment

method of the Web service, is created with the following properties:

XML HTTP transaction [

accessibility=Public

HTTP verb=GET

sub path=/.xml?__sequence=getDepartment

handles cookies=true

request template=

XML response encoding=ISO-8859-1

]

These parameters are edited in the Properties view of the Convertigo Studio:

XML attributes to
include

boolean[] standard Defines, when applicable, the XML attributes to
be included in the generated XML document.
These attributes are:
• Definition attributes: name, type;
• Position attributes: line, column;
• Color attributes: foreground,

background;
• Decoration attributes: bold, underline,

reverse, blink;
• Optional attributes.

XML response
encoding

String expert Defines the encoding of the XML returned by the
target server.
Default value is ISO-8859-1. Depending on the
target web service, the value has to be updated.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > HTTP connector objects examples in
the New Project wizard.

Property Type Category Description
2 - 388 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
 Figure 2 - 185: XML HTTP transaction - Configuration example

The transaction is created in the Transactions folder of the connector, including various other

objects, such as variables and test cases. It appears as follows in the Projects view:
2 - 389

Chapter "Convertigo Objects"
Web services
 Figure 2 - 186: XML HTTP transaction - Object in Projects view

Executing one of the test cases of the myGetDepartment transaction (thanks to the Run

entry in the test case’s contextual menu or by pressing the F5 key) invokes the Web service

method defined by the URL in Sub path property and gets the response from it. The connector

editor shows:

 on the left part, the HTTP response received from the target Web service method,

 on the right part, in the XML tab, the transaction output XML which includes the Web

service response:
2 - 390 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
 Figure 2 - 187: XML HTTP transaction - Responses in connector editor
2 - 391

Chapter "Convertigo Objects"
Web services
JSON HTTP TRANSACTION

OBJECT DESCRIPTION

Defines a JSON-based HTTP transaction.

A JSON HTTP transaction is an HTTP transaction, allowing to perform an HTTP request and

get the response back, for which responses are JSON-based. It is used to consume a JSON

web service.

Note: HTTP connector supports OAuth authentication. To enable OAuth, you simply need to

provide four variables to any kind of HTTP transaction: __header_oAuthKey,

__header_oAuthSecret, __header_oAuthToken and

__header_oAuthTokenSecret. For more information about OAuth in HTTP connector,

refer to the following article in our Technical Blog: http://www.convertigo.com/en/how-to/

technical-blog/entry/using-oauth-with-convertigo-http-connector.html

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Accessibility Accessibility standard Defines the transaction/sequence accessibility.
This property can take the following values:
• Public: The transaction/sequence is

runnable from everyone and everywhere,
visible in the Test Platform and is also
exposed in the SOAP WSDL as a web
service method.

• Hidden: The transaction/sequence is
runnable but only from people who know the
execution URL, not visible in the Test
Platform nor exposed in the SOAP WSDL.

• Private: The transaction/sequence is only
runnable from within the Convertigo engine
(Call Transaction/(Call Sequence steps), is
not visible in the Test Platform and cannot be
requested as SOAP web service method.
This value is used for tests, unfinished
transactions/sequences or functionalities not
to be exposed. Private transactions/
sequences remain runnable in the Studio, for
the developer to be able to test its
developments.

Note: In the Test Platform:
• The administrator user (authenticated in

Administration Console or Test Platform) can
see and run all transactions / sequences, no
matter what their accessibility is.

• The test user (authenticated in the Test
Platform or in case of anonymous access)
can see and run public transactions/
sequences and run hidden ones if he knows
their execution URL.
2 - 392 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Add statistics to
response

boolean expert Defines whether some statistics of execution of
the transaction/sequence should be added as
data in the transaction/sequence's response.
If this property is set to true, the transaction/
sequence response will be enhanced with the
statistics data of its execution (total time for the
request, time spent waiting for the mainframe,
etc.).
Note: This property has nothing to do with the
general property of the Convertigo engine Insert
statistics in the generated document that can
be edited in the Configuration page of the
Administration Console.

Authenticated context
required

boolean expert Defines whether an authenticated context is
required to execute the transaction/sequence.
If this property is set to true, the context of
execution of the transaction/sequence must have
been authenticated. Otherwise, the transaction/
sequence is not executed. Default value is
false for a standard access to transactions/
sequences.
Notes:
• When a context is authenticated, all the

contexts in the same HTTP session are also
authenticated. For more information about
context and HTTP session, see Context
general presentation paragraph in JavaScript
Objects APIs chapter.

• When executing a transaction/sequence from
stub (__stub variable passed to true in
entry), this property is ignored. Indeed,
executing from stub is for testing purposes
and should not require any authentication:
the context would never be authenticated as
the transaction/sequence setting the context
as authenticated could also be executed from
stub.

Authenticated user as
cache key

boolean expert Defines whether the authenticated user should
be used as cache key.
When the cache is enabled (Response lifetime
setting filled with a time-to-live), the
Authenticated user as cache key property
allows to specify to use the authenticated user ID
from context/session as an additional key to the
cache.
It would have as effect that two different identified
users cannot retrieve the cached response of the
other for the same request. Default value is
false: the authenticated user is not used as
cache key.

Call the biller boolean expert Defines whether the billing management module
should be called for each generated XML
document.
If this property is set to true, the applicable
billing management module, defined thanks to
the connector's billing class name property, is
invoqued. This parameter should never be
changed (Convertigo private use only).

Character set String expert Defines the character set used for operations on
the generated XML document (default: UTF-8).

Property Type Category Description
2 - 393

Chapter "Convertigo Objects"
Web services
Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

HTTP headers XMLVector expert Defines HTTP headers to be sent.
This property allows to define the request Header
Fields to be sent with the request to the target
web service method.
For each header, two columns have to be set:
• Variable: HTTP header name (ex:

Content-Type).
• Value: HTTP header value (ex:

application/x-www-from-
urlencoded).

Note: A new HTTP header can be added to the
list using the blue keyboard icon. The HTTP
headers defined in the list can be ordered using
the arrow up and arrow down buttons, or deleted
using the red cross icon.

HTTP info boolean expert Defines whether to include HTTP information in
output XML.
HTTP information can be added to the
transaction's output XML, such as the request
URL, HTTP status code and the HTTP request
and response headers. You can also have the
raw HTTP data in case of error.
The HTTP info property allows to define whether
these information have to be inserted in the
transaction's output XML (value set to true) or
not (value set to false).
Default value is false.

HTTP info tagname String expert Defines the tagname of the element containing
the HTTP info in output XML.
When the HTTP info property defines to insert
the HTTP information in the transaction's output
XML, the HTTP info tagname property allows
the programmer to define the tagname of the
element containing these information.
Default value is HttpInfo.

HTTP verb int standard Defines the HTTP verb to use for this HTTP
request: GET, POST, PUT, DELETE, HEAD, TRACE,
OPTIONS or CONNECT.
For more information about HTTP verbs, you can
visit the following RFC page: http://www.w3.org/
Protocols/rfc2616/rfc2616-sec9.html.

Handles cookies boolean expert Defines whether cookies must be handled.
If set to true (default value), the transaction
maintains cookies in Convertigo's context.
Default value should not be changed unless you
specifically want the transaction to ignore cookies
while browsing.

Include certificate
group

boolean expert Includes the certificate group into the cache key.
If set to true, the certificate group is added to
the cache key which is used to determine
whether the transaction's response should be
pulled from the cache or not.
A transaction's cached response is pulled from
the cache when all cache key values are
corresponding to a stored cache entry.

Property Type Category Description
2 - 394 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Include data type in
XML response nodes

boolean expert Defines if the JSON data type should be included
in converted XML nodes.
Default value is true: data types are included in
the XML nodes of the response as type
attributes.
Changing this property to false has as effect to
not include the data types in XML nodes: the
transaction response XML contains only data.

JSON array
translation policy

int expert Defines how JSON arrays should be translated to
XML.
This property allows the Convertigo developer to
choose how he wants the JSON arrays to be
translated to XML. The need can be different
depending on the source JSON web service.
Possible options are:
• hierarchical: full expanded mode, with

sub nodes for array items,
• compact: more compressed format with one

node per array item, without encompassing
array node.

Default value is hierarchical.

JSON response
encoding

String expert Defines the encoding of the JSON returned by
the target server.
Default value is UTF-8. Depending on the target
web service, the value has to be updated.

Property Type Category Description
2 - 395

Chapter "Convertigo Objects"
Web services
Request template String expert Defines the request body template file path.
HTTP request sent by the transaction can contain
data in its body. This data is based on a user-
defined template file, which can be:
• an XML file describing the content of the

HTTP request body, possibly including
transaction input variables in the data
structure,

• an XSL file used to transform the variable-
based transaction input XML to generate the
content of the HTTP request body.

This property allows to define the path of the
template file, it is either:
• a local file, by default relative to the project's

directory, or to the project's current subfolder,
• a local file relative to the Convertigo webapp

common templates directory,
• an absolute path.
If the template file is an XML file, it can contain
transaction variables identified with a specific
syntax in the XML and dynamically replaced at
runtime with received variable values.
The syntax to use in the XML template file to
refer to a transaction variable is the following:
• $(<variableHttpName>): this simple

notation starts with a $ character and then
includes between brackets the HTTP name
of the variable. Beware that the HTTP name
of the variable can be different from the
variable name (see Variable objects
documentation).

• $(<variableHttpName>)concat: this
notation is very similar to the preceding,
excepted that the last bracket is followed by
the concat keyword. It starts by a $
character and includes between brackets the
HTTP name of the variable, that should be in
this case a Multi-valued variable. The
concat keyword implies that all values
received in the Multi-valued variable must be
concatenated before replacing this notation
by this computed value in the template XML.

• $(<variableHttpName>): this notation is
identical to the first notation, but the behavior
is different for a Multi-valued variable. The
tag surrounding this notation in the template
XML is duplicated for each value in the Multi-
valued variable.

Response client
cache

boolean expert Defines whether the transaction/sequence
response should be cached by the client.
If set to false, the response XML is sent to the
client along with HTTP headers forcing the client
browser not to store it in its local cache. This is
the default value, since dynamic responses are
usually preferred. If set to true, the XML
response is sent normally.

Property Type Category Description
2 - 396 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Response lifetime String expert Defines the response time-to-live (in seconds) in
cache, i.e. the time during which the cached
response remains valid or time interval for its
renewal. This property enables the cache when
filled, disables the cache when left empty.
The Response lifetime property allows to
specify the cache settings for the transaction/
sequence's response. It can be set to the
following values:
• <empty>: Disables the cache for the

transaction/sequence. The response will not
be cached and each request will execute the
complete transaction. It is the default value.

• absolute,<time in secs>: Enables the
cache for the transaction/sequence. The
response will be cached for the time specified
in seconds. If an other request with the same
parameters occurs within this time, the
response will be returned from the cache.

• daily,hh:mm:ss: Enables the cache for
the transaction/sequence. The response will
be cached until hh:mm:ss of the current day
is reached. If an other request with the same
parameters occurs before this time, the
response will be returned from the cache. A
new day starts at 00:00:00.

• weekly,hh:mm:ss,w: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the wth
day of week is reached. For Sunday w = 1,
for Monday w = 2 ... and for Saturday w = 7. If
an other request with the same parameters
occurs before this time, the response will be
returned from the cache. A new day starts
at 00:00:00.

• monthly,hh:mm:ss,d: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the dth
day of month is reached. If an other request
with the same parameters occurs before this
time, the response will be returned from the
cache. A new day starts at 00:00:00.

Notes:
• The Response lifetime property editor

proposes a Generator tool that can help you
configure the Response lifetime setting.

• The Variable objects contain the Cache key
property that allows to specify to use this
variable as a key to the cache or not. See
Variable objects documentation for more
information.

Response timeout long standard Defines the response maximum waiting time (in
seconds).
Maximum time (in seconds) for a transaction/
sequence to run. When specified time is reached,
the transaction/sequence ends and returns a
timeout error. If requested through the SOAP
interface, the error is returned as a SOAP
exception.

Property Type Category Description
2 - 397

Chapter "Convertigo Objects"
Web services
EXAMPLES

Let’s consider a company named Global Company delivering a Web service for its Human

Secure connection
required

boolean expert Defines whether the transaction/sequence
should be called through a secured connection
(e.g. HTTPS).
Depending on the requester, if this property is set
to true, the transaction/sequence must be
accessed through a secure connection (e.g.
HTTPS in case of HTTP access). Default value is
false for a standard access to transactions/
sequences.

Style sheet int standard Defines how the XML returned by the transaction
has to be processed by XSLT.
This property can take the following values:
• None: Do not process with XSLT. Usual

setting for web services (SOAP or REST)
where plain XML data is to be returned.

• From transaction: Use the XSL style
sheet attached to the transaction. When
used, make sure a style sheet object is
added to the transaction.

• From last detected screen class:
Use XSL style sheet attached to the last
detected screen class (in case of a
transaction with screen classes).

Transactions using sheets from last detected
screen class are mainly used in Web Clipping or
Legacy Publishing projects.

Sub path String standard Defines the end of the path for the HTTP
connection.
This property allows to define the sub path,
relative to the connector root path, to the target
web service URI.
For example, if the target is: http://server/
MyApp/targetpage.jsp, the connector server
would be: server, the connector root path: /
MyApp and the transaction sub path: /
targetpage.jsp.

URL charset
encoding

String expert Defines the charset encoding to use for the
variable values sent as parameters in HTTP
request.
This property allows to define the charset
encoding used to URL-encode the parameter
values:
• GET parameters for the query string,
• POST parameters in case of application/

x-www-form-urlencoded content-type.
Default value is blank. If blank, the parent
connector's Default URL charset encoding
property value is used.

XML attributes to
include

boolean[] standard Defines, when applicable, the XML attributes to
be included in the generated XML document.
These attributes are:
• Definition attributes: name, type;
• Position attributes: line, column;
• Color attributes: foreground,

background;
• Decoration attributes: bold, underline,

reverse, blink;
• Optional attributes.

Property Type Category Description
2 - 398 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
Resources department.This is a sample Web service accessible in REST and SOAP modes

(developed thanks to Convertigo).

We defined an HTTP connector, in a project named sample_refManual_http, for

connecting to this sample Web service in REST (for more information, see HTTP connector

documentation and examples). In these examples, we are focusing on the transactions

created to call some of this Web service’s methods in JSON.

Example 1

Several JSON HTTP transaction objects are created to call some methods of the target Web

service in JSON. For example, one transaction, defined to call the departmentsList

method of the Web service, is created with the following properties:

JSON HTTP transaction [

accessibility=Public

HTTP verb=GET

sub path=/.json?__sequence=departmentsList

include data type in XML response nodes=false

JSON array translation policy=hierarchical

JSON response encoding=UTF-8

]

These parameters are edited in the Properties view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > HTTP connector objects examples in
the New Project wizard.
2 - 399

Chapter "Convertigo Objects"
Web services
 Figure 2 - 188: JSON HTTP transaction - Example 1 - Configuration example

The transaction is created in the Transactions folder of the connector, including various other

transactions. It appears as follows in the Projects view:
2 - 400 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
 Figure 2 - 189: JSON HTTP transaction - Example 1 - Object in Projects view

Executing the myDepartmentsJsonList transaction (thanks to the Execute entry in the

transaction’s contextual menu or by pressing the F5 key) invokes the Web service method

defined by the URL in Sub path property and gets the response from it. The connector editor

shows:

 on the left part, the HTTP response received from the target Web service method,

 on the right part, in the XML tab, the transaction output XML generated from the JSON

Web service response, using the hierarchical array translation policy:
2 - 401

Chapter "Convertigo Objects"
Web services
 Figure 2 - 190: JSON HTTP transaction - Example 1 - Responses in connector editor

Example 2

Let’s consider a second JSON HTTP transaction from the same HTTP connector, developped

to call another method of the target Web service in JSON. This transaction, defined to call the

employeesList method of the Web service, is created with the following properties:

JSON HTTP transaction [

accessibility=Public

HTTP verb=GET

sub path=/.json?__sequence=employeesList

include data type in XML response nodes=false

JSON array translation policy=compact

JSON response encoding=UTF-8

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 402 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
 Figure 2 - 191: JSON HTTP transaction - Example 2 - Configuration example

The transaction is created in the Transactions folder of the connector, including various other

transactions. It appears as follows in the Projects view:
2 - 403

Chapter "Convertigo Objects"
Web services
 Figure 2 - 192: JSON HTTP transaction - Example 2 - Object in Projects view

Executing the myEmployeesJsonList transaction (thanks to the Execute entry in the

transaction’s contextual menu or by pressing the F5 key) invokes the Web service method

defined by the URL in Sub path property and gets the response from it. The connector editor

shows:

 on the left part, the HTTP response received from the target Web service method,

 on the right part, in the XML tab, the transaction output XML generated from the JSON

Web service response, using the compact array translation policy:
2 - 404 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web services
 Figure 2 - 193: JSON HTTP transaction - Example 2 - Responses in connector editor

WHAT HAPPENED?

You can see the difference between the first example’s transaction, that used the

hierarchical array translation policy and this one which uses the compact translation

policy: the array items are named by the array label (here employee), whereas in the first

example the array items are named object, and were surrounded by a parent node named

with the array label (which was service).
2 - 405

Chapter "Convertigo Objects"
Web
2.8 Web
2 - 406 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
2.8.1 Main objects
2 - 407

Chapter "Convertigo Objects"
Web
HTML CONNECTOR

OBJECT DESCRIPTION

Establishes connections with an HTML application.

An HTML connector allows Convertigo to connect to a website to perform transactions, that is

to say navigate through web pages and either:

 extract data into a proper XML document (CWI),

 clip defined web pages (CWC).

HTML connector is needed by Convertigo to connect to HTML applications. Once connected,

all tasks (screen classes detection, data extraction, browsing, etc.) associated with the HTML

connector can be carried out as defined in the project thanks to several objects:

 Screen classes,

 Criteria,

 Extraction rules,

 HTML transactions,

 Screen classes handlers,

 Statements.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Authentication type Authentication
Mode

expert Defines the authentication type between basic
and NTLM authentications.
This property allows to define which type of
authentication has to be used for the HTTP
request. Default value is Basic.
If Basic/NTLM authentication user and Basic/
NTLM authentication password properties are
not filled, no authentication is performed.
Notes:
• If you are using basic authentication setting,

the target application should accept WWW-
Authenticate header.

• If you are using NTLM authentication setting,
do not forget to also fill the NTLM
authentication domain property.
2 - 408 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Basic/NTLM
authentication
password

String expert Defines the user's password for basic or NTLM
authentication.
This property value is used as user password for
basic or NTLM authentication.
Notes:
• The type of authentication is chosen using

the Authentication type property.
• If you are using basic authentication setting,

the target application should accept WWW-
Authenticate header.

• If you are using NTLM authentication setting,
do not forget to also fill the NTLM
authentication domain property.

Basic/NTLM
authentication user

String expert Defines the user name for basic or NTLM
authentication.
This property value is used as user name for
basic or NTLM authentication.
Notes:
• The type of authentication is chosen using

the Authentication type property.
• If you are using basic authentication setting,

the target application should accept WWW-
Authenticate header.

• If you are using NTLM authentication setting,
do not forget to also fill the NTLM
authentication domain property.

Billing Java class String expert Defines the Java class name executed for billing
pruposes.
Convertigo supports a plugin architecture offering
billing functionalities. Set the name of the billing
class to be called by Convertigo for billing
purposes.

Carioca
authentication

boolean expert Defines whether the connector requires a
Carioca authentication.
Set to true if you require that only Carioca-
authenticated users be able to use this
connector.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default URL charset
encoding

String expert Defines the default charset encoding to use for
the transactions variable values sent as
parameters in HTTP requests.
This property allows to define the charset
encoding used to URL-encode the parameter
values:
• GET parameters for the query string,
• POST parameters in case of application/

x-www-form-urlencoded content-type.
Default value is UTF-8.

End transaction String expert Defines the transaction to execute before
removing the context.
When a Convertigo context is removed, the
specified "End transaction" is executed. Place in
this transaction any clean up code, for example a
Logout transaction.

Property Type Category Description
2 - 409

Chapter "Convertigo Objects"
Web
HTTP headers
forwarding policy

XMLVector expert Defines the HTTP headers to forward and the
policy to use to forward them.
This property allows forwarding HTTP headers
from the client browser to the target application.
This property allows to define a list of HTTP
headers to forward and, for each header, the
forwarding policy to use. For each header, two
columns have to be set:
• Header name: defines the name of the

header to forward,
• Forwarding policy: defines how to replace

the header value when forwarding it.
This second property can take the following
values:
• Merge: If the forwarded header exists, its

value is merged with existing one. If the
forwarded header doesn't exist, it is added.

• Ignore: If the forwarded header exists, its
value is not replaced, it is ignored. If the
forwarded header doesn't exist, it is added.

• Replace: Replaces all headers without any
condition by forwarded values.

Note: A new HTTP header can be added to the
list using the blue keyboard icon. The HTTP
headers defined in the list can be ordered using
the arrow up and arrow down buttons, or deleted
using the red cross icon.

Ignore empty
attributes

boolean expert Defines whether DOM empty attributes must be
parsed or ignored.
HTML elements can include empty attributes.
This property allows removing these attributes
from the page's DOM by setting it to true.

Is HTTPS boolean standard Defines whether the connection is secured
(HTTPS).
If set to true, the connection is SSL-based.
Make sure the target SSL port (usually 443) is
correctly set.

NTLM authentication
domain

String expert Defines the NTLM authentication domain in case
of NTLM authentication.
This property value is used as user domain for
NTLM authentication.
Notes:
• The type of authentication is chosen using

the Authentication type property.
• If you are using basic authentication setting,

this property does not need to be filled.

Parse mode ParseMode expert Defines the HTML parser version (since
Convertigo 4.0 / since Convertigo 4.5).
This property takes one of the following values:
• 4.0: uses parsing mode developed since

Convertigo 4.0 (original parsing mode),
• 4.5: uses parsing mode developed since

Convertigo 4.5 (faster parsing mode, but
sometimes not adapted).

Port int standard Defines the server port.

Root path String standard Defines the root path.
This is the first URI requested by the HTTP
connector. Any other URI in the project is relative
to this URI.

Property Type Category Description
2 - 410 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

Example 1

The following is an example of HTML connector set in the context of the "Starting With

Convertigo Web Integrator" tutorial.

This HTML connector connects to the Google website:

HTML connector [

is HTTPs=false

server=www.google.com

port=80

root path=/

trust all certificates=true

carioca authentication=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

Server String standard Defines the server name (or its IP address).
This property defines the DNS name or IP
address of the target application server.

Trust all certificates boolean standard Defines whether trusted certificates must be
checked.
In SSL mode, the server sends existing
certificates to Convertigo. In most cases, set this
setting to true to automatically trust all server
certificates. If set to false , target server
certificates must be installed in Convertigo.

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Web Integrator" tutorial or the procedure “Opening a sample project from
the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Web integration in the New Project wizard.

Property Type Category Description
2 - 411

Chapter "Convertigo Objects"
Web
 Figure 2 - 194: HTML connector - Example 1 - Configuration example

The connector is created in the Connectors folder of the project, including various other

objects, such as screen classes and transactions. It appears as follows in the Projects view:
2 - 412 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 195: HTML connector - Example 1 - Object in Projects view

The HTML connector editor displaying current HTML page with the corresponding DOM tree,

and the XPath evaluator tool, appears as follows:
2 - 413

Chapter "Convertigo Objects"
Web
 Figure 2 - 196: HTML connector - Example 1 - Web page in editor’s Web browser

The default application URI (concatenation of IsHTTPs, Server, Port, and Root path

properties) HTML page is displayed in the Web browser of the Connector editor.

Example 2

Let’s consider Convertigo website, accessible at the following URL: http://

www.convertigo.com. In this example, we want to define an HTML connector, in a new

project named sample_refManual_webClipper, allowing to connect to this website.

This HTML connector connects to the Convertigo website:

HTML connector [

is HTTPs=false

server=www.convertigo.com

port=80

root path=/

trust all certificates=true

carioca authentication=false

]

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Web Clipper objects examples in the
New Project wizard.
2 - 414 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 197: HTML connector - Example 2 - Configuration example

The connector is created along with the Web Clipping project that contains it. Therefor, it

appears in the Connectors folder of the project, including various other objects, such as a

screen classes structure (specific to Web Clipping projects) and transactions. It appears as

follows in the Projects view:
2 - 415

Chapter "Convertigo Objects"
Web
 Figure 2 - 198: HTML connector - Example 2 - Object in Projects view

The HTML connector editor displaying current HTML page with the corresponding DOM tree,

and the XPath evaluator tool, appears as follows:

 Figure 2 - 199: HTML connector - Example 2 - Connector editor with Web browser, DOM tree and XPath evaluator

The default application URI (concatenation of IsHTTPs, Server, Port, and Root path
2 - 416 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
properties) HTML page is displayed in the Web browser of the Connector editor.
2 - 417

Chapter "Convertigo Objects"
Web
HTML TRANSACTION

OBJECT DESCRIPTION

Defines an HTML transaction.

As regards web applications, Convertigo's basic principle is to:

 connect to websites,

 detect defined screen classes and navigate through web pages,

 extract web page data using screen class-specific extraction rules,

 treat extracted data in order to generate an XML document structured as required.

This process defines the notion of HTML transaction.

HTML transactions are based on input variables, as other transactions. They execute actions

that are programmed using event handlers and statements, they are designed to handle web

pages navigation. HTML Transactions return data in an XML structure resulting from

automated navigation on the target website and extraction rules execution on these pages or,

in the case of Web Clipper extraction rule, clip required HTML parts of the web pages.

A Convertigo project can contain several HTML transactions, each of them being exposed as

standard REST or SOAP web service method.

OBJECT PROPERTIES

The table below describes the object properties:
2 - 418 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Property Type Category Description

Accessibility Accessibility standard Defines the transaction/sequence accessibility.
This property can take the following values:
• Public: The transaction/sequence is

runnable from everyone and everywhere,
visible in the Test Platform and is also
exposed in the SOAP WSDL as a web
service method.

• Hidden: The transaction/sequence is
runnable but only from people who know the
execution URL, not visible in the Test
Platform nor exposed in the SOAP WSDL.

• Private: The transaction/sequence is only
runnable from within the Convertigo engine
(Call Transaction/(Call Sequence steps), is
not visible in the Test Platform and cannot be
requested as SOAP web service method.
This value is used for tests, unfinished
transactions/sequences or functionalities not
to be exposed. Private transactions/
sequences remain runnable in the Studio, for
the developer to be able to test its
developments.

Note: In the Test Platform:
• The administrator user (authenticated in

Administration Console or Test Platform) can
see and run all transactions / sequences, no
matter what their accessibility is.

• The test user (authenticated in the Test
Platform or in case of anonymous access)
can see and run public transactions/
sequences and run hidden ones if he knows
their execution URL.

Add statistics to
response

boolean expert Defines whether some statistics of execution of
the transaction/sequence should be added as
data in the transaction/sequence's response.
If this property is set to true, the transaction/
sequence response will be enhanced with the
statistics data of its execution (total time for the
request, time spent waiting for the mainframe,
etc.).
Note: This property has nothing to do with the
general property of the Convertigo engine Insert
statistics in the generated document that can
be edited in the Configuration page of the
Administration Console.
2 - 419

Chapter "Convertigo Objects"
Web
Authenticated context
required

boolean expert Defines whether an authenticated context is
required to execute the transaction/sequence.
If this property is set to true, the context of
execution of the transaction/sequence must have
been authenticated. Otherwise, the transaction/
sequence is not executed. Default value is
false for a standard access to transactions/
sequences.
Notes:
• When a context is authenticated, all the

contexts in the same HTTP session are also
authenticated. For more information about
context and HTTP session, see Context
general presentation paragraph in JavaScript
Objects APIs chapter.

• When executing a transaction/sequence from
stub (__stub variable passed to true in
entry), this property is ignored. Indeed,
executing from stub is for testing purposes
and should not require any authentication:
the context would never be authenticated as
the transaction/sequence setting the context
as authenticated could also be executed from
stub.

Authenticated user as
cache key

boolean expert Defines whether the authenticated user should
be used as cache key.
When the cache is enabled (Response lifetime
setting filled with a time-to-live), the
Authenticated user as cache key property
allows to specify to use the authenticated user ID
from context/session as an additional key to the
cache.
It would have as effect that two different identified
users cannot retrieve the cached response of the
other for the same request. Default value is
false: the authenticated user is not used as
cache key.

Call the biller boolean expert Defines whether the billing management module
should be called for each generated XML
document.
If this property is set to true, the applicable
billing management module, defined thanks to
the connector's billing class name property, is
invoqued. This parameter should never be
changed (Convertigo private use only).

Character set String expert Defines the character set used for operations on
the generated XML document (default: UTF-8).

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Property Type Category Description
2 - 420 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
HTTP headers XMLVector expert Defines HTTP headers to be sent.
HTML transaction can connect automatically to a
target web page without using a specific
statement (see the Maintain connector state
property). The HTTP headers property allows to
define the request Header Fields to be sent with
the request to connect to the target web page.
For each header, two colums have to be
parametered:
• Variable: HTTP header name (ex:

Content-Type).
• Value: HTTP header value (ex:

application/x-www-from-
urlencoded).

HTTP verb int standard Defines the HTTP verb to use for this HTTP
request: GET, POST, PUT, DELETE, HEAD, TRACE,
OPTIONS or CONNECT.
For more information about HTTP verbs, you can
visit the following RFC page: http://www.w3.org/
Protocols/rfc2616/rfc2616-sec9.html.

Handles cookies boolean expert Defines whether cookies must be handled.
If set to true (default value), the transaction
maintains cookies in Convertigo's context.
Default value should not be changed unless you
specifically want the transaction to ignore cookies
while browsing.

Include certificate
group

boolean expert Includes the certificate group into the cache key.
If set to true, the certificate group is added to
the cache key which is used to determine
whether the transaction's response should be
pulled from the cache or not.
A transaction's cached response is pulled from
the cache when all cache key values are
corresponding to a stored cache entry.

Maintains connector
state

boolean expert Defines whether the connector state must be
maintained between transactions.
If set to false (default value), each time the
transaction is executed, it connects the connector
browser to the target web page specified in the
Sub path property using the HTTP headers
property for headers, and the Synchronization
property to synchronize on the accessed page.
If set to true, the transaction maintains the
connector state, i.e. uses the browser in the state
in which it has been left when the preceding
transaction ended.

Property Type Category Description
2 - 421

Chapter "Convertigo Objects"
Web
Request template String expert Defines the request body template file path.
HTTP request sent by the transaction can contain
data in its body. This data is based on a user-
defined template file, which can be:
• an XML file describing the content of the

HTTP request body, possibly including
transaction input variables in the data
structure,

• an XSL file used to transform the variable-
based transaction input XML to generate the
content of the HTTP request body.

This property allows to define the path of the
template file, it is either:
• a local file, by default relative to the project's

directory, or to the project's current subfolder,
• a local file relative to the Convertigo webapp

common templates directory,
• an absolute path.
If the template file is an XML file, it can contain
transaction variables identified with a specific
syntax in the XML and dynamically replaced at
runtime with received variable values.
The syntax to use in the XML template file to
refer to a transaction variable is the following:
• $(<variableHttpName>): this simple

notation starts with a $ character and then
includes between brackets the HTTP name
of the variable. Beware that the HTTP name
of the variable can be different from the
variable name (see Variable objects
documentation).

• $(<variableHttpName>)concat: this
notation is very similar to the preceding,
excepted that the last bracket is followed by
the concat keyword. It starts by a $
character and includes between brackets the
HTTP name of the variable, that should be in
this case a Multi-valued variable. The
concat keyword implies that all values
received in the Multi-valued variable must be
concatenated before replacing this notation
by this computed value in the template XML.

• $(<variableHttpName>): this notation is
identical to the first notation, but the behavior
is different for a Multi-valued variable. The
tag surrounding this notation in the template
XML is duplicated for each value in the Multi-
valued variable.

Response client
cache

boolean expert Defines whether the transaction/sequence
response should be cached by the client.
If set to false, the response XML is sent to the
client along with HTTP headers forcing the client
browser not to store it in its local cache. This is
the default value, since dynamic responses are
usually preferred. If set to true, the XML
response is sent normally.

Property Type Category Description
2 - 422 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Response lifetime String expert Defines the response time-to-live (in seconds) in
cache, i.e. the time during which the cached
response remains valid or time interval for its
renewal. This property enables the cache when
filled, disables the cache when left empty.
The Response lifetime property allows to
specify the cache settings for the transaction/
sequence's response. It can be set to the
following values:
• <empty>: Disables the cache for the

transaction/sequence. The response will not
be cached and each request will execute the
complete transaction. It is the default value.

• absolute,<time in secs>: Enables the
cache for the transaction/sequence. The
response will be cached for the time specified
in seconds. If an other request with the same
parameters occurs within this time, the
response will be returned from the cache.

• daily,hh:mm:ss: Enables the cache for
the transaction/sequence. The response will
be cached until hh:mm:ss of the current day
is reached. If an other request with the same
parameters occurs before this time, the
response will be returned from the cache. A
new day starts at 00:00:00.

• weekly,hh:mm:ss,w: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the wth
day of week is reached. For Sunday w = 1,
for Monday w = 2 ... and for Saturday w = 7. If
an other request with the same parameters
occurs before this time, the response will be
returned from the cache. A new day starts
at 00:00:00.

• monthly,hh:mm:ss,d: Enables the cache
for the transaction/sequence. The response
will be cached until hh:mm:ss of the dth
day of month is reached. If an other request
with the same parameters occurs before this
time, the response will be returned from the
cache. A new day starts at 00:00:00.

Notes:
• The Response lifetime property editor

proposes a Generator tool that can help you
configure the Response lifetime setting.

• The Variable objects contain the Cache key
property that allows to specify to use this
variable as a key to the cache or not. See
Variable objects documentation for more
information.

Response timeout long standard Defines the response maximum waiting time (in
seconds).
Maximum time (in seconds) for a transaction/
sequence to run. When specified time is reached,
the transaction/sequence ends and returns a
timeout error. If requested through the SOAP
interface, the error is returned as a SOAP
exception.

Property Type Category Description
2 - 423

Chapter "Convertigo Objects"
Web
Secure connection
required

boolean expert Defines whether the transaction/sequence
should be called through a secured connection
(e.g. HTTPS).
Depending on the requester, if this property is set
to true, the transaction/sequence must be
accessed through a secure connection (e.g.
HTTPS in case of HTTP access). Default value is
false for a standard access to transactions/
sequences.

Style sheet int standard Defines how the XML returned by the transaction
has to be processed by XSLT.
This property can take the following values:
• None: Do not process with XSLT. Usual

setting for web services (SOAP or REST)
where plain XML data is to be returned.

• From transaction: Use the XSL style
sheet attached to the transaction. When
used, make sure a style sheet object is
added to the transaction.

• From last detected screen class:
Use XSL style sheet attached to the last
detected screen class (in case of a
transaction with screen classes).

Transactions using sheets from last detected
screen class are mainly used in Web Clipping or
Legacy Publishing projects.

Sub path String standard Defines the end of the path to use for connecting
to the target web page.
HTML transaction can connect automatically to a
target web page without using a specific
statement (see the Maintain connector state
property). The Sub path property allows to define
the sub path, relative to the connector root path,
to connect to the target web page URI.
For example, if the target is: http://server/
MyApp/targetpage.jsp, the connector server
would be: server, the connector root path: /
MyApp and the transaction sub path: /
targetpage.jsp.

Property Type Category Description
2 - 424 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Synchronization TriggerXMLizer expert Defines how to synchronize the transaction.
HTML transactions can connect automatically
(without using any specific statement) to a target
web page (see the Maintain connector state
property). This property allows to specify which
type of synchronizer is used in the connection
process.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

Property Type Category Description
2 - 425

Chapter "Convertigo Objects"
Web
EXAMPLES

The following is an example of HTML transaction set in the context of the "Starting With

Convertigo Web Integrator" tutorial.

The searchGoogle transaction is an HTML transaction which purpose is to connect to the

www.google.com Google search page, send a search request from an input keyword

variable, and extract result Web pages titles and URLs returned by the Google search engine.

The transaction is thus associated with a variable (the search keyword), a style sheet (for

presenting data as required using XSL transformation), test cases for testing purpose and

various statements and handlers implementing the transaction behavior.

The searchGoogle transaction appears as follows:

 in the Projects view of the Convertigo Studio:

URL charset
encoding

String expert Defines the charset encoding to use for the
variable values sent as parameters in HTTP
request.
This property allows to define the charset
encoding used to URL-encode the parameter
values:
• GET parameters for the query string,
• POST parameters in case of application/

x-www-form-urlencoded content-type.
Default value is blank. If blank, the parent
connector's Default URL charset encoding
property value is used.

XML attributes to
include

boolean[] standard Defines, when applicable, the XML attributes to
be included in the generated XML document.
These attributes are:
• Definition attributes: name, type;
• Position attributes: line, column;
• Color attributes: foreground,

background;
• Decoration attributes: bold, underline,

reverse, blink;
• Optional attributes.

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Web Integrator" tutorial or the procedure “Opening a sample project from
the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Web integration in the New Project wizard.

Property Type Category Description
2 - 426 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 200: HTML transaction - Object in Projects view

 in the Properties view of the Convertigo Studio:
2 - 427

Chapter "Convertigo Objects"
Web
 Figure 2 - 201: HTML transaction - Configuration example

The Maintains connector state property is set to false as the transaction should force the

connector to reconnect to the Google search page before starting executing the statements.

The Synchronization property set to Document Completed:1 allows to synchronize the

connector after its reconnection, i.e. the execution of the transaction’s handlers and

statements only starts after the synchonizer has returned. This property is edited in the Trigger

editor:
2 - 428 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 202: HTML transaction - Synchronization property edition

The Style sheet property is set to From transaction, which defines the use of the Style

sheet object existing in the Sheets folder of the transaction.
2 - 429

Chapter "Convertigo Objects"
Web
HTML SCREEN CLASS

OBJECT DESCRIPTION

Defines a group of screens with common features, in an HTML connector.

By the term "screen" is meant a set of identifiable data which may be rendered to the user or

not. It is generally used regardless of the resource accessed by Convertigo (web page, Legacy

screen, HTTP stream, etc.).

Thus, in the case of HTML connector projects (Web Integrator and Web Clipper), a screen may

be defined by the data displayed in an HTML browser, for a web page display.

An HTML Screen class is identified by a set of criteria which are dedicated to screen's data

detection. When accessing a screen (i.e. a web page) thanks to an HTML connector,

Convertigo looks for detection criteria defined for screen classes in current connector.

Convertigo considers that the accessed screen belongs to the HTML screen class which all

criteria match and which have the greatest number of criteria matching. For screen classes that

would have the same number of matching criteria, Convertigo considers that the screen

belongs to the screen class that has the greatest depth. And if screen classes also have the

same depth, Convertigo considers that the screen belongs to the first screen class in

alphabetical order.

For Web Integrator and Web Clipper projects (web pages in an HTML connector), detection

criteria are XPath and URL. You can see these objects definitions and properties for more

information.

An HTML screen class can also be associated with extraction rules executed on its detection

by Convertigo. Extraction rules define which data are to be extracted from a screen and turned

into a proper XML document.

HTML screen classes are pivotal in the execution of transactions, since their detection triggers

the execution of screen class handlers (including actions to be performed on detected screens)

and extraction rules (extracting data to be turned into XML).

Note: An HTML screen class do not define one screen only, but all screens matching the

specified criteria. It is up to the Convertigo programmer to set detection criteria.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Example 1

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 430 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
The sample_documentation_CWI project set in the context of the "Starting with Convertigo

Web Integrator" tutorial includes a number of HTML screen classes created to meet the project

and associated transaction (searchGoogle) needs.

The purpose of the searchGoogle transaction is to connect to the Google search engine

(www.google.com web page), to send a search request and to extract in XML format results

titles and URLs.

Screen classes have therefore been organized into:

 a root screen class matching on any "Web" tab Google page (including search form web

page and result list web page),

 inherited screen classes matching on specific pages (either on Google search or on result

list web page).

The following table summarizes all the implemented screen classes with their criteria:

Once created, HTML screen classes appear together with their detection criteria and possible

extraction rules in the Projects view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Web Integrator" tutorial or the procedure “Opening a sample project from
the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Web integration in the New Project wizard.

Table 2 - 1: sample_documentation_CWI project screen classes

Name Description Detection criterion

googleWebPages Root screen class detected when accessing
any Google Web tab page (including search
form or result list page).

"Web" link activated in top left
corner of the page.

googleComSearchPage Detected when accessing the Google.com
search page.

Root screen class criterion +
Google logo.

googleResultPageFinal Detected when accessing the final Google
result page.

Root screen class criterion +
Results container element.

googleResultPageCurrent Detected when accessing a current Google
result page (every page but the last).

Root screen class criterion +
Final Result page criterion +
"Next" link.
2 - 431

Chapter "Convertigo Objects"
Web
 Figure 2 - 203: HTML Screen class - Project’s screen classes and respective criteria

Screen classes appear as follows in the Properties view (here, the googleWebPages screen

class):
2 - 432 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 204: HTML Screen class - googleWebPages screen class properties

For more information about the different criteria defined to detect these screen classes, see

"Xpath criterion" documentation and examples.

Example 2

Let’s consider the following web page from Convertigo website:
2 - 433

Chapter "Convertigo Objects"
Web
 Figure 2 - 205: HTML Screen class - HTML web page

In this example, we want to define a Screen class matching this web page on a new project

named sample_refManual_webClipper.

A Screen class object has no properties to configure, it is defined by its criteria:

Screen class [

]

The Screen class object is created in the Screen classes folder of the connector, inherited

from the ClippedWebPages screen class. Indeed, as this is a Web Clipper project, it includes

the predefined screen classes structure: Default_Screen_Class with two inherited screen

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Web Clipper objects examples in the
New Project wizard.
2 - 434 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
classes ClippedWebPages and GenericWebPage. The screen class is created together

with its first criterion and appears as follows in the Projects view:

 Figure 2 - 206: HTML Screen class - Screen class and first criterion in Projects view

Thanks to its criterion defining the remarkable characteristics of the page, this Screen class

matches the previous web page. For more information about this criterion, see "Xpath" criterion

documentation and examples.
2 - 435

Chapter "Convertigo Objects"
Web
2.8.2 Criteria
2 - 436 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
XPATH

OBJECT DESCRIPTION

Defines a criterion based on an XPath for HTML screen classes.

The XPath criterion allows defining an XPath expression leading to one or several elements of

a web page that uniquely identify a given screen class (logo, image, link, field, etc.).

Matching condition: The XPath criterion matches when the evaluation of the Xpath expression,

defined in XPath property, on the HTML page's DOM gives a non-empty result.

Note: The XPath criterion, together with the URL criterion, are the two only possible criteria for

detecting a screen class in CWC and CWI projects.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Example 1

The sample_documentation_CWI project set in the context of the "Starting with Convertigo

Web Integrator" tutorial includes a number of HTML screen classes that are all detected using

XPath detection criteria.

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.

XPath String standard Defines the XPath expression of searched
nodes.
The execution of this XPath on the web page
DOM can result in a single Node or a NodeList.
In these cases, the criterion matches.
The execution of the XPath on the web page
DOM can result in an empty result. In this case,
the criterion doesn't match.
2 - 437

Chapter "Convertigo Objects"
Web
For example, the googleWebPages root screen class representing any Google Web page

(either search or result) is detected if the first tab ("Search" on Google.com) appearing on the

top left corner of the page is selected:

 Figure 2 - 207: XPath criterion - Google Web page

The screen class detection criterion is first selected on screen with a right-click, then its XPath

is generated from relevant elements in the DOM using the XPath Evaluator of the Convertigo

Studio:

 Figure 2 - 208: XPath criterion - Generating XPath in the XPath Evaluator

Then the XPath criterion is created with the following parameters:

XPath [

xpath=//A[@id="gb_1" and @class="gbzt gbz0l gbp1"]

reverse result=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Web Integrator" tutorial or the procedure “Opening a sample project from
the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Web integration in the New Project wizard.
2 - 438 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 209: XPath criterion - Configuration example

The XPath property means that any HTML page with:

 a A node with the id attribute which is gb_1,

 and a class attribute which is gbzt gbz0l gbp1, meaning that this is the selected tab,

is a Web page detected as belonging to the googleWebPages screen class.

This can be checked using the Show current screen class function (button in the

Connector View).

Once it is generated, the XPath criterion appears as follows in the screen class Criteria folder

in the Projects view:

 Figure 2 - 210: XPath criterion - googleWebPages screen class criterion in Projects view

Example 2

Let’s consider the following web page from Convertigo website:
2 - 439

Chapter "Convertigo Objects"
Web
 Figure 2 - 211: XPath criterion - HTML web page

A Screen class has been defined for matching this web page on a new project named

sample_refManual_webClipper.

This screen class is identified thanks to an XPath criterion, defined as follows:

XPath [

xpath=//TD[@class="contentheading-products" and contains(text(),

"Convertigo Shared Cloud: Secure and Flexible")]

reverse result=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Web Clipper objects examples in the
New Project wizard.
2 - 440 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 212: XPath criterion - Configuration example

The XPath property expression means that, if an HTML page contains:

 a table cell with a class attribute which is contentheading-products,

 and a text containing Convertigo Shared Cloud: Secure and Flexible,

then the web page matches this XPath criterion.

Once it is generated, the XPath criterion appears as follows in the screen class Criteria folder

in the Projects view:

 Figure 2 - 213: XPath criterion - Object in Projects view

This criterion matches on the previous web page from Convertigo website. The web page is

then detected as belonging to the matching screen class. For more information about the

screen class, see "HTML Screen class" documentation and examples.
2 - 441

Chapter "Convertigo Objects"
Web
URL (WEB)

OBJECT DESCRIPTION

Defines a criterion based on requested URL for HTML screen classes.

The URL criterion allows defining a regular expression that is applied on current page's URL.

Matching condition: The URL criterion matches when the regular expression, defined in

Regular expression property, matches the current page's URL, i.e. if the string pattern

described by the regular expression is found in the page's URL.

Note: The URL criterion, together with the XPath criterion, are the two only possible criteria for

detecting a screen class in CWC and CWI projects.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Regular expression String standard Defines the regular expression to match.
This property allows defining a regular
expression as a string pattern.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.
2 - 442 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
2.8.3 Extraction rules
2 - 443

Chapter "Convertigo Objects"
Web
WEB CLIPPING EXTRACTION RULES
2 - 444 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
WEB CLIPPER

OBJECT DESCRIPTION

Clips fragments of a web page.

The Web Clipper extraction rule extracts entire parts of an HTML page. It is applied if the result

of the Xpath expression evaluation exists into the HTML page DOM.

The fragment resulting from the Xpath expression evaluation on the HTML page DOM is

appended to the HTML transaction output document, with its presentation (images, style

sheets, etc.) and behavior (scripts, links, etc.). The URI paths present in the elements of this

fragment are changed by Convertigo in order not to point directly towards these URIs.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes XMLVector configuration Lists the names of attributes that have to be
processed by the rewriting of URI paths.
By default, a list of usual attributes is already set:
src, href, background, action, cite,
classid, codebase, data, longdesc,
usemap.
Note: A new attribute can be added to the list
using the blue keyboard icon. The attributes
defined in the list can be ordered using the arrow
up and arrow down buttons, or deleted using the
red cross icon.

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Enable HTTP tunnel HttpTunnel configuration Defines whether resources and links are
retrieved through Convertigo HTTP tunnel or not ;
and if so, whether the Convertigo HTTP tunnel
uses cache or not.
It can take three values:
• disable: the resources are not got through

Convertigo HTTP tunnel, but directly,
• cache: the resources are got through

COnvertigo HTTP tunnel and the tunnel uses
cache,

• no cache: the resources are got through
COnvertigo HTTP tunnel and the tunnel
doesn't use cache.

Enable parent
extraction

boolean configuration Extracts all parents and ancestors of clipped
elements for styles inheritance.

Is active boolean configuration Defines whether the extraction rule is active.

XPath String selection Defines the Xpath expression of nodes on which
the extraction rule applies.
Depending on the extraction rule, the execution
of this Xpath on the web page DOM can result in
a single Node or a NodeList.
2 - 445

Chapter "Convertigo Objects"
Web
EXAMPLES

Example 1

For the first example, let’s consider the following web page from Convertigo website, "The

Product Lineup, Convertigo Shared Cloud":

 Figure 2 - 214: Web Clipper extraction rule - Example 1 - HTML web page

In this example, we want to extract the titles (in orange) and subtitles (in blue) of the page

content thanks to a Web Clipper extraction rule, in a new project named

sample_refManual_webClipper, allowing to connect to this website.

Once accessing this web page in the connector editor thanks to the

goToConvertigoCloudProductPage transaction, the Xpath matching both elements is

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Web Clipper objects examples in the
New Project wizard.
2 - 446 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
generated using the Xpath Evaluator:

 Figure 2 - 215: Web Clipper extraction rule - Example 1 - Generating Xpath in the Xpath Evaluator

Then the rule is created with the following parameters:

Web Clipper [

xpath=//H2|//H4

attributes=[src, href, background, action, cite, classid, codebase,

data, longdesc, usemap]

enable HTTP tunnel=disable

enable parent extraction=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 216: Web Clipper extraction rule - Example 1 - Configuration example
2 - 447

Chapter "Convertigo Objects"
Web
Attributes property is edited in the Screen zone editor:

 Figure 2 - 217: Web Clipper extraction rule - Example 1 - Attributes property edition

Once it is generated, the Web Clipper extraction rule appears as follows in the screen class

Extraction rules folder in the Projects view:
2 - 448 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 218: Web Clipper extraction rule - Example 1 - Object in Projects view

When the rule is applied, the resulting XML includes the HTML elements retrieved by the Xpath

expression:
2 - 449

Chapter "Convertigo Objects"
Web
 Figure 2 - 219: Web Clipper extraction rule - Example 1 - Resulting XML with rule

After XSL transformation, thanks to default web clipping project XSL style sheet, the clipped

elements are displayed as follows (in a Web browser, possibly through the Test Platform):
2 - 450 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 220: Web Clipper extraction rule - Example 1 - Webized page with rule

We can notice that the presentation attributes (like font colors) seem not completely identical

to the original website. Maybe the elements themselves don’t have all style properties, but in

the context of the full page they do have more style properties. For that reason, we are

changing the Enable parent extraction property value to set it to true.

When the rule is applied, the resulting XML includes the HTML elements retrieved by the Xpath

expression as well as their parent and ancestor elements:
2 - 451

Chapter "Convertigo Objects"
Web
 Figure 2 - 221: Web Clipper extraction rule - Example 1 - Resulting XML with rule (with parent extraction)

After XSL transformation, thanks to default web clipping project XSL style sheet, the clipped

elements are displayed as they are in the original website:
2 - 452 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 222: Web Clipper extraction rule - Example 1 - Webized page with rule (with parent extraction)

Example 2

For the second example, let’s consider the following web page from Google search engine:
2 - 453

Chapter "Convertigo Objects"
Web
 Figure 2 - 223: Web Clipper extraction rule - Example 2 - HTML web page

In this example, we want to extract the Google logo and search form thanks to a Web Clipper

extraction rule, using Convertigo HTTP tunnel, in a new connector of the

sample_refManual_webClipper project allowing to connect to this website.

Once accessing this web page by opening the GoogleConnector connector editor, the

Xpath matching both elements is generated using the Xpath Evaluator:

 Figure 2 - 224: Web Clipper extraction rule - Example 2 - Generating Xpath in the Xpath Evaluator

Then the rule is created with the following parameters:

Web Clipper [

xpath=//DIV[@id="lga"]|//FORM[@name="f"]

attributes=[src, href, background, action, cite, classid, codebase,

data, longdesc, usemap]

enable HTTP tunnel=no cache

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Web Clipper objects examples in the
New Project wizard.
2 - 454 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
enable parent extraction=true

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 225: Web Clipper extraction rule - Example 2 - Configuration example

Once it is generated, the Web Clipper extraction rule appears as follows in the screen class

Extraction rules folder in the Projects view:
2 - 455

Chapter "Convertigo Objects"
Web
 Figure 2 - 226: Web Clipper extraction rule - Example 2 - Object in Projects view

When the rule is executed, the resulting XML includes the HTML elements retrieved by the

Xpath expression, with their parents and ancestors (thanks to the Enable parent extraction

property set to true):
2 - 456 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 227: Web Clipper extraction rule - Example 2 - Resulting XML with rule

After XSL transformation, thanks to default web clipping project XSL style sheet, the clipped

elements are displayed as follows (in a Web browser, possibly through the Test Platform):
2 - 457

Chapter "Convertigo Objects"
Web
 Figure 2 - 228: Web Clipper extraction rule - Example 2 - Webized page with rule

The image and styles have been correctly got through Convertigo HTTP tunnel (thanks to the

Enable HTTP tunnel property set to no cache).
2 - 458 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
ADD LINK

OBJECT DESCRIPTION

Adds an HTML link under a node.

The Add link extraction rule adds an HTML link (A tag with attributes and content) in the XHTML

content clipped by a Web Clipper extraction rule.

It is part of the set of Web Clipping extraction rules adding content into the XHTML content of

a previously executed Web Clipper extraction rule, such as:

 Add image,

 Add text,

 Add button.

Such extraction rules change the XHTML content resulting from the execution of a Web Clipper

extraction rule, by adding specific XHTML content based on defined parameters.

Notes:

 The XPath property set for such extraction rules must be valid in the XHTML output

resulting from the Web Clipper extraction rule and possibly modified by previous rules.

 If a list of nodes are matching the defined Xpath, the Add link extraction rule will only add

one link under the first matching node.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Href JS expression configuration Defines the content of the href attribute.
The href attribute allows to define the link
destination, i.e. which web page this link will
reach.

Is active boolean configuration Defines whether the extraction rule is active.

Target new window boolean configuration Defines whether the link should open in a new
window.
If set to true, sets the tag target attribute to
target="_blank".

Text String configuration Defines the text content to add.
Depending on the extraction rule, it is:
• the added text, for Add text rule,
• the link displayed text, for Add link rule,
• the added image label and alternative text,

for Add image and Add button rules.
2 - 459

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the second example of Web clipper extraction rule, which clips Google logo and

search form on Google search engine page, thanks to objects created in the

sample_refManual_webClipper project.

After the application of the Web clipper extraction rule and XSL transformation thanks to

default XSL style sheet, the clipped elements are displayed as follows:

 Figure 2 - 229: Web Clipper extraction rule - Example 2 - Clipped web page

In this example, we want to add a link on the clipped web page under the two already present

links on the right of the page, thanks to an Add link extraction rule.

The Xpath matching the links container element in clipped XHTML is generated using the

Xpath Evaluator of the Convertigo Studio:

XPath String selection Defines the Xpath expression of nodes on which
the extraction rule applies.
Depending on the extraction rule, the execution
of this Xpath on the web page DOM can result in
a single Node or a NodeList.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Web Clipper objects examples in the
New Project wizard.

Property Type Category Description
2 - 460 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 230: Add link extraction rule - Generating Xpath in the Xpath Evaluator

This Xpath matches the TD element containing both links for the new link to be added under

them.

The rule is created with the following parameters:

Add link [

xpath=//TD[@class="fl sblc"]

href="http://www.convertigo.com/

target new window=true

text="Open Convertigo web site"

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 231: Add link extraction rule - Configuration example

The Target new window property is set to true so that the link will open the reached web

page in a new tab or new window (depending on the browser).

Once it is generated, the Add link extraction rule appears as follows in the screen class

Extraction rules folder in the Projects view:
2 - 461

Chapter "Convertigo Objects"
Web
 Figure 2 - 232: Add link extraction rule - Object in Projects view

When the rule is executed, the resulting XML includes the HTML elements retrieved by the

Web clipper extraction rule, plus the added link:

 Figure 2 - 233: Add link extraction rule - Resulting XML with rule

After XSL transformation, thanks to default web clipping project XSL style sheet, the link is

displayed under the form clipped elements as follows:
2 - 462 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 234: Add link extraction rule - Webized page with rule

We can see the link text corresponding to defined Text property. When clicking on the link, a

new window (or tab, depending on the browser) opens with Convertigo website page defined

in Href property.
2 - 463

Chapter "Convertigo Objects"
Web
ADD BUTTON

OBJECT DESCRIPTION

Adds an HTML button under a node.

The Add button extraction rule adds an HTML button, that is to say an image element (IMG tag)

associated with a link (A tag), in the XHTML content clipped by a Web Clipper extraction rule.

It is part of the set of Web Clipping extraction rules adding content into the XHTML content of

a previously executed Web Clipper extraction rule, such as:

 Add link,

 Add text,

 Add image.

Such extraction rules change the XHTML content resulting from the execution of a Web Clipper

extraction rule, by adding specific XHTML content based on defined parameters.

Notes:

 The XPath property set for such extraction rules must be valid in the XHTML output

resulting from the Web Clipper extraction rule and possibly modified by previous rules.

 If a list of nodes are matching the defined Xpath, the Add button extraction rule will only

add one button under the first matching node.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Href JS expression configuration Defines the content of the href attribute.
The href attribute allows to define the link
destination, i.e. which web page this link will
reach.

Image URL String configuration Defines the button image URL.
The image URL can be either absolute or relative
to the project.

Is active boolean configuration Defines whether the extraction rule is active.

Target new window boolean configuration Defines whether the link should open in a new
window.
If set to true, sets the tag target attribute to
target="_blank".
2 - 464 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the first example of Web clipper extraction rule, which clips titles and subtitles

on "The Product Lineup, Convertigo Shared Cloud" page from Convertigo website, in a project

named sample_refManual_webClipper, thanks to objects created in the

sample_refManual_webClipper project.

After the application of the Web clipper extraction rule and XSL transformation thanks to

default XSL style sheet, the clipped elements are displayed as follows:

Text String configuration Defines the text content to add.
Depending on the extraction rule, it is:
• the added text, for Add text rule,
• the link displayed text, for Add link rule,
• the added image label and alternative text,

for Add image and Add button rules.

XPath String selection Defines the Xpath expression of nodes on which
the extraction rule applies.
Depending on the extraction rule, the execution
of this Xpath on the web page DOM can result in
a single Node or a NodeList.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Web Clipper objects examples in the
New Project wizard.

Property Type Category Description
2 - 465

Chapter "Convertigo Objects"
Web
 Figure 2 - 235: Web Clipper extraction rule - Example 1 - Clipped web page

In this example, we want to add a button on the clipped web page next to the first title, thanks

to an Add button extraction rule.

The Xpath matching all title elements in clipped XHTML is generated using the Xpath

Evaluator of the Convertigo Studio:

 Figure 2 - 236: Add button extraction rule - Generating Xpath in the Xpath Evaluator

This Xpath can match on all title elements, the rule will only add one button on the first
2 - 466 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
matching node.

The rule is created with the following parameters:

Add button [

xpath=//H2

href="http://www.convertigo.com/en/overview/convertigo-cloud.html"

image URL="img/button_img.png"

target new window=true

text="open original page"

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 237: Add button extraction rule - Configuration example

The image URL property is relative to the project directory. It is set with a parent "img/" path,

meaning that the image file has to be stored in an img folder at the root of the project directory:
2 - 467

Chapter "Convertigo Objects"
Web
 Figure 2 - 238: Add button extraction rule - Storing image file on "img" folder

The Target new window property is set to true so that the link will open the reached web

page in a new tab or new window (depending on the browser).

Once it is generated, the Add button extraction rule appears as follows in the screen class

Extraction rules folder in the Projects view:
2 - 468 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 239: Add button extraction rule - Object in Projects view

When the rule is executed, the resulting XML includes the HTML elements retrieved by the

Web clipper extraction rule, plus the added image button:
2 - 469

Chapter "Convertigo Objects"
Web
 Figure 2 - 240: Add button extraction rule - Resulting XML with rule

After XSL transformation, thanks to default web clipping project XSL style sheet, the button is

displayed next to clipped elements as follows:
2 - 470 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 241: Add button extraction rule - Webized page with rule

We can see the tooltip containing text defined in Text property. When clicking on the button, a

new window (or tab, depending on the browser) opens with Convertigo website page defined

in Href property.
2 - 471

Chapter "Convertigo Objects"
Web
ADD TEXT

OBJECT DESCRIPTION

Adds HTML text under a node.

The Add text extraction rule adds an HTML text element (P tag with text content) in the XHTML

content clipped by a Web Clipper extraction rule.

It is part of the set of Web Clipping extraction rules adding content into the XHTML content of

a previously executed Web Clipper extraction rule, such as:

 Add link,

 Add Image,

 Add button.

Such extraction rules change the XHTML content resulting from the execution of a Web Clipper

extraction rule, by adding specific XHTML content based on defined parameters.

Notes:

 The XPath property set for such extraction rules must be valid in the XHTML output

resulting from the Web Clipper extraction rule and possibly modified by previous rules.

 If a list of nodes are matching the defined Xpath, the Add text extraction rule will only add

one text under the first matching node.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Text String configuration Defines the text content to add.
Depending on the extraction rule, it is:
• the added text, for Add text rule,
• the link displayed text, for Add link rule,
• the added image label and alternative text,

for Add image and Add button rules.

XPath String selection Defines the Xpath expression of nodes on which
the extraction rule applies.
Depending on the extraction rule, the execution
of this Xpath on the web page DOM can result in
a single Node or a NodeList.
2 - 472 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
ADD IMAGE

OBJECT DESCRIPTION

Adds an HTML image under a node.

The Add image extraction rule adds an HTML image element (IMG tag with attributes) in the

XHTML content clipped by a Web Clipper extraction rule.

It is part of the set of Web Clipping extraction rules adding content into the XHTML content of

a previously executed Web Clipper extraction rule, such as:

 Add link,

 Add text,

 Add button.

Such extraction rules change the XHTML content resulting from the execution of a Web Clipper

extraction rule, by adding specific XHTML content based on defined parameters.

Notes:

 The XPath property set for such extraction rules must be valid in the XHTML output

resulting from the Web Clipper extraction rule and possibly modified by previous rules.

 If a list of nodes are matching the defined Xpath, the Add image extraction rule will only

add one image under the first matching node.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Image URL String configuration Defines the image URL.
The image URL can be either absolute or relative
to the project.

Is active boolean configuration Defines whether the extraction rule is active.

Text String configuration Defines the text content to add.
Depending on the extraction rule, it is:
• the added text, for Add text rule,
• the link displayed text, for Add link rule,
• the added image label and alternative text,

for Add image and Add button rules.

XPath String selection Defines the Xpath expression of nodes on which
the extraction rule applies.
Depending on the extraction rule, the execution
of this Xpath on the web page DOM can result in
a single Node or a NodeList.
2 - 473

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the second example of Web clipper extraction rule, which clips Google logo and

search form on Google search engine page, thanks to objects created in the

sample_refManual_webClipper project.

After the application of the Web clipper extraction rule and XSL transformation thanks to

default XSL style sheet, the clipped elements are displayed as follows:

 Figure 2 - 242: Web Clipper extraction rule - Example 2 - Clipped web page

In this example, we want to add an image on the clipped web page under the search form

buttons, thanks to an Add image extraction rule.

The Xpath matching the form element in clipped XHTML is generated using the Xpath

Evaluator of the Convertigo Studio:

 Figure 2 - 243: Add image extraction rule - Generating Xpath in the Xpath Evaluator

This Xpath matches the FORM element for the image to be added at the end of the form, after

buttons.

The rule is created with the following parameters:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Web Clipper objects examples in the
New Project wizard.
2 - 474 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Add image [

xpath=//FORM[@name="f"]

image URL="logo-convertigo.png"

text="Convertigo"

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 244: Add image extraction rule - Configuration example

The image URL property is relative to the project directory. It is set with no parent path,

meaning that the image file has to be stored at the root of the project directory:

 Figure 2 - 245: Add image extraction rule - Storing image file in the project directory

Once it is generated, the Add image extraction rule appears as follows in the screen class

Extraction rules folder in the Projects view:
2 - 475

Chapter "Convertigo Objects"
Web
 Figure 2 - 246: Add image extraction rule - Object in Projects view

When the rule is executed, the resulting XML includes the HTML elements retrieved by the

Web clipper extraction rule, plus the added image:
2 - 476 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 247: Add image extraction rule - Resulting XML with rule

After XSL transformation, thanks to default web clipping project XSL style sheet, the image is

displayed under the form clipped elements as follows:
2 - 477

Chapter "Convertigo Objects"
Web
 Figure 2 - 248: Add image extraction rule - Webized page with rule

We can see the tooltip containing text defined in Text property.
2 - 478 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
DELETE NODES

OBJECT DESCRIPTION

Removes identified nodes from the XML output document.

The Delete nodes extraction rule deletes all nodes matching the Xpath defined in the XPath

property set for the rule. Nodes are deleted from the XML output generated by a previously

executed Web Clipper extraction rule.

When setting a Web Clipper extraction rule, it is sometimes impossible to avoid clipping

unwanted elements. This rule allows to delete them following their extraction.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the second example of Web clipper extraction rule, which clips Google logo and

search form on Google search engine page, thanks to objects created in the

sample_refManual_webClipper project.

After the application of the Web clipper extraction rule and XSL transformation thanks to

default XSL style sheet, the clipped elements are displayed as follows:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

XPath String selection Defines the Xpath expression of nodes on which
the extraction rule applies.
Depending on the extraction rule, the execution
of this Xpath on the web page DOM can result in
a single Node or a NodeList.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > Web Clipper objects examples in the
New Project wizard.
2 - 479

Chapter "Convertigo Objects"
Web
 Figure 2 - 249: Web Clipper extraction rule - Example 2 - Clipped web page

In this example, we want to remove the links on the right of the page from the clipped web

page, thanks to a Delete nodes extraction rule. We can identify these elements in the previous

clipped page XHTML:

 Figure 2 - 250: Web Clipper extraction rule - Example 2 - Resulting XML

The Xpath matching the links elements in clipped XHTML is generated using the Xpath

Evaluator of the Convertigo Studio:
2 - 480 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 251: Delete nodes extraction rule - Generating Xpath in the Xpath Evaluator

This Xpath matches the A elements corresponding to every link, it was chosen for all links to

be removed.

The rule is created with the following parameter:

Delete nodes [

xpath=//TD[@class="fl sblc"]/A

]

This parameter is edited in the Properties view of the Convertigo Studio:

 Figure 2 - 252: Delete nodes extraction rule - Configuration example

Once it is generated, the Delete nodes extraction rule appears as follows in the screen class

Extraction rules folder in the Projects view:
2 - 481

Chapter "Convertigo Objects"
Web
 Figure 2 - 253: Delete nodes extraction rule - Object in Projects view

When the rule is executed, the resulting XML includes the HTML elements retrieved by the

Web clipper extraction rule, unless deleted elements:
2 - 482 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 254: Delete nodes extraction rule - Resulting XML with rule

After XSL transformation, thanks to default web clipping project XSL style sheet, the clipped

elements are displayed as follows:

 Figure 2 - 255: Delete nodes extraction rule - Webized page with rule
2 - 483

Chapter "Convertigo Objects"
Web
DATA EXTRACTION RULES
2 - 484 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
NODE

OBJECT DESCRIPTION

Extracts an XML node from a web page.

The Node extraction rule extracts an XML node from a web page. It is applied if the result of

the Xpath expression evaluation exists into the HTML page DOM.

The first node matching the Xpath expression is extracted: the element is copied then

appended to the HTML transaction DOM.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the following web page from Google search engine:

 Figure 2 - 256: Node extraction rule - HTML web page

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

XPath String selection Defines the Xpath expression of nodes on which
the extraction rule applies.
Depending on the extraction rule, the execution
of this Xpath on the web page DOM can result in
a single Node or a NodeList.
2 - 485

Chapter "Convertigo Objects"
Web
In this example, we want to extract the first node corresponding to available tabs (from the top

of the page) thanks to a Node extraction rule.

The Xpath is generated using the Xpath Evaluator of the Convertigo Studio:

 Figure 2 - 257: Node extraction rule - Generating Xpath in the Xpath Evaluator

Then the rule is created with the following parameters:

Node [

xpath=//A[@class="gb1"]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 258: Node extraction rule - Configuration example

When the rule is executed, the resulting XML includes the first XML node retrieved by the

Xpath expression:

 Figure 2 - 259: Node extraction rule - Resulting XML with rule
2 - 486 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
NODE LIST

OBJECT DESCRIPTION

Extracts an XML node list from a web page.

The Node list extraction rule extracts a list of XML nodes from a web page. It is applied if the

result of the Xpath expression evaluation exists into the HTML page DOM.

The nodes matching the Xpath expression are extracted: the elements are copied then

appended to the HTML transaction DOM.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the following web page from Google search engine:

 Figure 2 - 260: Node list extraction rule - HTML web page

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

XPath String selection Defines the Xpath expression of nodes on which
the extraction rule applies.
Depending on the extraction rule, the execution
of this Xpath on the web page DOM can result in
a single Node or a NodeList.
2 - 487

Chapter "Convertigo Objects"
Web
In this example, we want to extract the nodes corresponding to available tabs (from the top of

the page) thanks to a Node list extraction rule.

The Xpath is generated using the Xpath Evaluator of the Convertigo Studio:

 Figure 2 - 261: Node list extraction rule - Generating Xpath in the Xpath Evaluator

Then the rule is created with the following parameters:

Node list [

xpath=//A[@class="gb1"]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 262: Node list extraction rule - Configuration example

When the rule is executed, the resulting XML includes the XML nodes retrieved by the Xpath

expression:

 Figure 2 - 263: Node list extraction rule - Resulting XML with rule
2 - 488 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
2 - 489

Chapter "Convertigo Objects"
Web
RECORD (WEB)

OBJECT DESCRIPTION

Extracts data from a web page in an XML record.

The Record extraction rule helps you extract a set of data from HTML text parts with identical

and recurring presentation in a web page.

Extracted data are organized into a simple XML structure made of:

 a parent base element "corresponding to" the base recurring HTML elements containing

data to extract, e.g a <RECORD>

 child elements "corresponding to" HTML text parts containing data, e.g <DATAT1>,

<DATAT2>, etc.

The rule is applied if the result of the record Xpath expression evaluation exists in the HTML

page DOM.

The resulting record elements are appended to the HTML transaction output DOM as follows:

<record_tagname referer="referer_url">

 <data1_tagname>extracted text from data1 xpath</data1_tagname>

 <data2_tagname>extracted text from data2 xpath</data2_tagname>

</record_tagname>

<record_tagname referer="referer_url">

 <data1_tagname>extracted text from data1 xpath</data1_tagname>

 <data2_tagname>extracted text from data2 xpath</data2_tagname>

</record_tagname>

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 490 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

If we consider the following web page from Google search engine:

Description XMLVector selection Describes how to extract data into record child
text elements.
The record is structured as a recurring element
containing data, which are defined through
Description property.
This property is a list of child elements
descriptions, also named columns descriptions.
Each column description is composed of the
following fields:
• Name: Tag name of the child element (the

default name is data).
• Extract children: Indicates whether text

extraction should recurse on child elements
of the elements found thanks to the Xpath (by
default it is set to false). As it needs more
CPU if set to "true", it is then recommended
to customize your XPath (using //text()
function for example).

• XPath: XPath expression selecting child
element data. It is often defined relatively to
parent Record extraction rule Xpath
expression using the following syntax: ./.

Display referer boolean configuration Defines whether the referer URL is displayed in
the output XML element.
If this property is set to true, the referer URL is
added as an attribute, named referer, to the
XML element added by the extraction rule.

Is active boolean configuration Defines whether the extraction rule is active.

Tag name String configuration Defines the record tag name in resulting DOM
(default tag name is XMLRecord).

XPath String selection Defines the Xpath expression of nodes on which
the extraction rule applies.
Depending on the extraction rule, the execution
of this Xpath on the web page DOM can result in
a single Node or a NodeList.

Property Type Category Description
2 - 491

Chapter "Convertigo Objects"
Web
 Figure 2 - 264: Record extraction rule - Google results web page

We can notice that Google results are recurrent elements on this Web page. Using a Record

extraction rule, we want to extract two pieces of data for each Google result: the title and the

URL pointed by the link.

This extraction rule will extract sets of data from this web page by:

 extracting each Google result title by concatenating the texts contained in the title HTML

element with the texts contained in its child HTML elements,

 and inserting this text into a title element,

 extracting the text contained in the hypertext link on each Google title result,

 and inserting it into an url element.

The Record extraction rule is created with the following parameters:
2 - 492 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Record [

xpath="//LI[@class="g"]"

tagname="result"

display referer=false

description={

column [name="title" extract children=true xpath="./H3"],

column [name="url" extract children=false

xpath="/H3/A[@class="l"]/@href"]

}

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 265: Record extraction rule - Configuration example

The Description property elements (columns) are defined in the Projects view of the

Convertigo Studio:

 Figure 2 - 266: Record extraction rule - Description property: columns definition

And each column properties are edited in the Properties view of the Convertigo Studio:
2 - 493

Chapter "Convertigo Objects"
Web
 Figure 2 - 267: Record extraction rule - Column properties configuration example

When the rule is executed, the resulting XML includes the record elements and their child data:

 Figure 2 - 268: Record extraction rule - Resulting XML with rule
2 - 494 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
TABLE (WEB)

OBJECT DESCRIPTION

Extracts data from a web page in an XML table.

The Table extraction rule helps you extract data into a table structure.

Extracted data are organized into an XML table structure made of:

 a parent base element "corresponding to" the base HTML element containing data to

extract. In most cases, this element is an HTML table element.

 child elements "corresponding to" recurring row HTML part. In most cases, if root is an

HTML table element, each tr element is assumed to be a row of data.

 rows child elements "corresponding to" recurring column HTML part. In most cases, within

a tr row, each td element is assumed to be a cell.

The rule is applied if the result of the table XPath expression evaluation exists in the HTML

page DOM.

Based on this root, the child elements are also defined by Xpath expressions. Each Xpath

expression may be relative to its parent element Xpath expression, using the following syntax:

"./".

By default, a row XPath expression is .//TR. You can add restrictions in the XPath

expression, for example .//TR[position() > 1], meaning that each tr element within

the table is a row except the first one.

Columns are defined relatively to their parent row. By default, a column Xpath expression is

.//TD.

The resulting table element is appended to the HTML transaction DOM as follows:

<table_tagname referer="referer_url">

 <row_tagname>

 <column1_tagname>extracted text from xpath</column1_tagname>

 <column2_tagname>extracted text from xpath</column2_tagname>

 </row_tagname>

 <row_tagname>

 <column1_tagname>extracted text from xpath</column1_tagname>

 <column2_tagname>extracted text from xpath</column2_tagname>

 </row_tagname>

</table_tagname>

OBJECT PROPERTIES

The table below describes the object properties:
2 - 495

Chapter "Convertigo Objects"
Web
Property Type Category Description

Accumulate data in
same table

boolean configuration Accumulates every data from several screens in
the same table XML element.

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Description XMLVector selection Describes the table structure in which data are
extracted.
The table is structured as a root element
containing row and column child elements, which
are defined through Description property.
This property is a list of child elements
descriptions, also named rows descriptions. Each
row is described using two properties:
• Row tag name: Row element tag name in

resulting DOM (the default tag name is row).
All resulting nodes described by the following
row XPath are tagged after this name.

• Row XPath: XPath expression selecting row
elements . It is often defined relatively to
parent Table extraction rule XPath
expression. The XPath can result in several
nodes (ex .//TR) meaning that several rows
are being extracted.Each row description
contains a list of child elements descriptions,
also named columns descriptions. Each
column description is composed of the
following fields:

• Column tag name: Columns element tag
name in resulting DOM (the default name is
column).

• Column XPath: XPath expression selecting
column elements (data to extract). It is often
defined relatively to parent row Xpath
expression using the following syntax: "./".

• Extract children: Indicates whether text
extraction should recurse on child elements
of the elements found thanks to the Xpath (by
default it is set to true). As it needs more
CPU if set to "true", it is then recommended
to customize your XPath (using //text()
function for example) and set this property to
false.

Display referer boolean configuration Defines whether the referer URL is displayed in
the output XML element.
If this property is set to true, the referer URL is
added as an attribute, named referer, to the
XML element added by the extraction rule.

Flip table orientation boolean configuration Flips the table orientation, turning lines into
columns and columns into lines.

Is active boolean configuration Defines whether the extraction rule is active.

Tag name String configuration Defines the table tag name in the resulting XML
(default tag name is XMLTable).

XPath String selection Defines the Xpath expression of nodes on which
the extraction rule applies.
Depending on the extraction rule, the execution
of this Xpath on the web page DOM can result in
a single Node or a NodeList.
2 - 496 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

This section contains a generic and a specific description example, as well as an example of

table flipping.

Generic Description Example

If we consider the following web page from SalesForce website, famous CRM SaaS

application:

 Figure 2 - 269: Table extraction rule - SalesForce Leads web page

We can notice that this Web page contains data in a table, surrounded in green in previous

figure. These data are organized into a structure based on an HTML table element in the

page DOM. Using a Table extraction rule, we want to extract these data.

This extraction rule will extract sets of data from this web page by extracting the real HTML

table element :

 listing TR elements as rows,

 extracting data from TD and/or TH elements as columns,

 naming data columns after the header line columns.

The Table extraction rule creation wizard automatically helps configurating the rule’s rows and

columns for standard HTML table cases, such as this one. The columns and rows are then

automatically displayed and are adjustable in the New Table wizard page:
2 - 497

Chapter "Convertigo Objects"
Web
 Figure 2 - 270: Table extraction rule - New Table wizard page

The Table extraction rule is then automatically created by the wizard with the following

parameters:

Table [

xpath="//TABLE[@class="list"]"

tagname="XMLTable"

accumulate data in same table=false

display referer=false

flip table orientation=false

description={

row [row tag name="row" row xpath="(./TBODY/TR)[position()>1]"

column [name="_Action" extract children=true

xpath="(./TD|./TH)[1]"],

column [name="Name" extract children=true

xpath="(./TD|./TH)[2]"],

column [name="Company" extract children=true

xpath="(./TD|./TH)[3]"],

column [name="State_Province" extract children=true

xpath="(./TD|./TH)[4]"],

column [name="Street" extract children=true

xpath="(./TD|./TH)[5]"],

column [name="Zip_Postal_Code" extract children=true

xpath="(./TD|./TH)[6]"],

column [name="City" extract children=true

xpath="(./TD|./TH)[7]"],

column [name="Country" extract children=true

xpath="(./TD|./TH)[8]"],
2 - 498 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
column [name="Email" extract children=true

xpath="(./TD|./TH)[9]"],

],

}

]

These parameters are edited in the Properties view of the Convertigo Studio, to change the

tagname to Leads:

 Figure 2 - 271: Table extraction rule - Configuration example

The Description property elements (rows and columns) are defined in the Projects view of

the Convertigo Studio:

 Figure 2 - 272: Table extraction rule - Description property: rows and columns definition
2 - 499

Chapter "Convertigo Objects"
Web
Row properties and each column properties are edited in the Properties view of the

Convertigo Studio:

 Figure 2 - 273: Table extraction rule - Row properties configuration example

 Figure 2 - 274: Table extraction rule - Column properties configuration example

When the rule is executed, the resulting XML includes the table element, its rows, and their

columns data:
2 - 500 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 275: Table extraction rule - Resulting XML with automatically parametered rule

Specific Description Example

If we consider the following web page from Google search engine:
2 - 501

Chapter "Convertigo Objects"
Web
 Figure 2 - 276: Table extraction rule - Google results web page

We can notice that Google results are recurrent elements on this Web page and they are all

contained in a root DIV element. Using a Table extraction rule, we want to extract two pieces

of data for each Google result: the title and the URL pointed by the link.

This extraction rule will extract sets of data from this web page by:

 listing all Google results and defining them as row element,

 extracting each Google result title by concatenating the texts contained in the title HTML

element with the texts contained in its child HTML elements,

 and inserting this text into a title element,

 extracting the text contained in the hypertext link on each Google title result,

 and inserting it into an url element.

The Table extraction rule is created with the following parameters:
2 - 502 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Table [

xpath="//DIV[@id="res"]"

tagname="results"

accumulate data in same table=false

display referer=false

flip table orientation=false

description={

row [row tag name="result" row xpath=".//OL/LI[@class="g"]"

column [name="title" extract children=true xpath="./H3"],

column [name="url" extract children=false

xpath="/H3/A[@class="l"]/@href"]

],

}

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 277: Table extraction rule - Configuration example

The Description property elements (rows and columns) are defined in the Projects view of

the Convertigo Studio:
2 - 503

Chapter "Convertigo Objects"
Web
 Figure 2 - 278: Table extraction rule - Description property: rows and columns definition

Row properties and each column properties are edited in the Properties view of the

Convertigo Studio:

 Figure 2 - 279: Table extraction rule - Row properties configuration example

 Figure 2 - 280: Table extraction rule - Column properties configuration example

When the rule is executed, the resulting XML includes the table element, its rows, and their

columns data:
2 - 504 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 281: Table extraction rule - Resulting XML with rule

Specific description with flip table option example

The following rule has a specific description, row and column XPaths are inverted to fit with the

flip table option selected.

The following figure describes thedifferences between standard table and table with flipping

process, on which configuration this property applies and the different XML that are generated

without and with this property:
2 - 505

Chapter "Convertigo Objects"
Web
 Figure 2 - 282: Table extraction rule - Table flipping example

The two corresponding Table extraction rules are parametered as follows:

Table [

xpath="//TABLE[@id='standard']"
2 - 506 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
tagname="table_standard"

displayreferer="true"

description={

Row [

xpath=".//TR[position()>1]"

tagname="row"

columns={

Column [xpath="./TD" tagname="column" childs="true"],

}

]

}

]

for the first table, without flipping process, and as follows:

Table [

xpath="//TABLE[@id='reverse']"

tagname="table_reverse"

displayreferer="true"

description={

Row [

xpath=".//TR[1]"

tagname="column1"

columns={

Column [xpath="./TD[position()>1]" tagname="row"

childs="true"],

}

],

Row [

xpath=".//TR[2]"

tagname="column2"

columns={

Column [xpath="./TD[position()>1]" tagname="row"

childs="true"],

}

]

}

]

for the second table, with flipping process.
2 - 507

Chapter "Convertigo Objects"
Web
TEXT

OBJECT DESCRIPTION

Extracts data from a web page in an XML text node.

The Text extraction rule helps you extract a text from an HTML page. It is applied if the result

of the Xpath expression evaluation exists in the HTML page DOM.

It creates a simple XML element containing text extracted from the first matching node. This

text element is appended to the resulting HTML transaction DOM as follows:

<text_tagname referer="referer_url">extracted text from xpath</

text_tagname>

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

If we consider the following web page from Google search engine:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Display referer boolean configuration Defines whether the referer URL is displayed in
the output XML element.
If this property is set to true, the referer URL is
added as an attribute, named referer, to the
XML element added by the extraction rule.

Is active boolean configuration Defines whether the extraction rule is active.

Recurse boolean configuration Defines whether text extraction should recurse
on child elements of the matching node.

Tag name String configuration Defines the tag name in the resulting XML
(default tag name is XMLText).

XPath String selection Defines the Xpath expression of nodes on which
the extraction rule applies.
Depending on the extraction rule, the execution
of this Xpath on the web page DOM can result in
a single Node or a NodeList.
2 - 508 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 283: Text extraction rule - HTML web page

We can see four links under the search form. We want to extract the text of the first link thanks

to a Text extraction rule.

The Xpath matching on all links is generated using the Xpath Evaluator of the Convertigo

Studio:

 Figure 2 - 284: Text extraction rule - Generating Xpath in the Xpath Evaluator

Then the rule is created with the following parameters:

Text [

xpath=//DIV[@id="fll"]//A

recurse=true

tag name="link"

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 509

Chapter "Convertigo Objects"
Web
 Figure 2 - 285: Text extraction rule - Configuration example

After extraction, the link text is extracted in the output XML as follows:

 Figure 2 - 286: Text extraction rule - Resulting XML with rule
2 - 510 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
HTTP HEADERS

OBJECT DESCRIPTION

Extracts the HTTP headers of the response to the request Convertigo did to get the current

web page.

The HTTP headers extraction rule always extracts HTTP headers of responses. They are

appended to the HTML transaction output DOM as follows:

<HttpHeaders>

 <header headerName="header1" headerValue="value1"/>

 <header headerName="header2" headerValue="value2"/>

</HttpHeaders>

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the following page from Google search engine:

 Figure 2 - 287: HTTP headers extraction rule - HTML web page

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 511

Chapter "Convertigo Objects"
Web
In this example, we want to extract the HTTP headers of the page thanks to an HTTP headers

extraction rule, in a screen class defined in simpleGoogleConnector connector of

sample_refManual_statements project.

The rule has no property to set, it is just created on corresponding screen class.

Once it is generated, the Add link extraction rule appears as follows in the screen class

Extraction rules folder in the Projects view:

 Figure 2 - 288: HTTP headers extraction rule - Object in Projects view

After execution of the extraction rule, the HTTP headers are extracted in the output XML as

follows:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > HTML connector statements
examples in the New Project wizard.
2 - 512 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 289: HTTP headers extraction rule - Resulting XML with rule
2 - 513

Chapter "Convertigo Objects"
Web
PAGE URL

OBJECT DESCRIPTION

Retrieves the current page URL.

The Page URL extraction rule always extracts the URL of current web page. It is appended to

the HTML transaction output DOM as follows:

<HttpUrl>urlContent</HttpUrl>

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the following page from Google search engine:

 Figure 2 - 290: Page URL extraction rule - HTML web page

In this example, we want to extract the url of the page thanks to a Page URL extraction rule, in

a screen class defined in simpleGoogleConnector connector of

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Tag name String configuration Defines the tag name.
By default, the URL is extracted in a HttpUrl
tag. This property allows to change this XML tag.
2 - 514 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
sample_refManual_statements project.

The rule is created with the following parameters:

Page URL [

tag name="myPageUrl"

]

This parameter is edited in the Properties view of the Convertigo Studio:

 Figure 2 - 291: Page URL extraction rule - Configuration example

Once it is generated, the Add link extraction rule appears as follows in the screen class

Extraction rules folder in the Projects view:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > HTML connector statements
examples in the New Project wizard.
2 - 515

Chapter "Convertigo Objects"
Web
 Figure 2 - 292: Page URL extraction rule - Object in Projects view

After execution of the extraction rule, the page URL is extracted in the output XML as follows:

 Figure 2 - 293: Page URL extraction rule - Resulting XML with rule
2 - 516 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
PRINT SCREEN

OBJECT DESCRIPTION

Takes a screenshot of the current web page.

The Print screen extraction rule creates a screenshot of the currently displayed web page and

generates a Base64 representation that is inserted in an element of the output XML.

The Print screen extraction rule can take a screenshot of the whole web page or of a part of

the page. To select only a part of the page, you can use the Capture corner and Capture size

properties.

The image compression method of the generated binary data can be chosen using the Image

format property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Capture corner left int configuration Defines the horizontal space in pixel between the
left of the browser window and the left of the
captured frame.
The Print screen extraction rule can capture only
a part of the web page. Use this property to
choose the position of the left of the screenshot
area.
Leave this property to its 0 default value if you
want to capture a screenshot from the left of the
page.

Capture corner top int configuration Defines the vertical space in pixel between the
top of the browser window and the top of the
captured frame.
The Print screen extraction rule can capture only
a part of the web page. Use this property to
choose the position of the top of the screenshot
area.
Leave this property to its 0 default value if you
want to capture a screenshot from the top of the
page.

Capture size height int configuration Defines the height of the captured frame (in
pixels).
The Print screen extraction rule can capture only
a part of the web page. Use this property to
choose the height of the screenshot area.
Leave this property to its -1 default value if you
want to capture the whole height of the web
page.

Capture size width int configuration Defines the width of the captured frame (in
pixels).
The Print screen extraction rule can capture only
a part of the web page. Use this property to
choose the width of the screenshot area.
Leave this property to its -1 default value if you
want to capture the whole width of the web page.
2 - 517

Chapter "Convertigo Objects"
Web
Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Data url prefix boolean configuration Includes a prefix to the Base64 binary data to
allow a direct use of the image from the XML.
Setting this property to true adds a
data:image/<xxx>;base64, prefix to the
image binary data in the output XML, with <xxx>
value is jpg or png depending on the Image
format property value.
This allows the developer to directly use the
image data without writing it in a file. For
example, it can be used in an src attribute of an
IMG HTML tag.

Image format ImageFormat configuration Defines the image compression method used to
generate the image binary data.
This property can take several values:
• png: using this value generates a fine but

heavy image,
• jpeg: using this value generates a blurred

but lightweight image.

Image scale float configuration Defines the ratio to reduce (<1) or increase (>1)
the size of the final captured image.
The Print screen extraction rule can automatically
perform a transformation on the captured image:
• increasing its original size if you use a value

superior to 1,
• reducing its original size if you use a value

inferior to 1.

Is active boolean configuration Defines whether the extraction rule is active.

Tag name String configuration Defines the tag name in the resulting XML
(default tag name is PrintScreen).

Waiting delay long selection Defines the minimum delay (in ms) to wait after
the "completed" event to realize the screenshot.
This property allows to define a time to wait
before the screenshot is performed and after the
last document:completed event, in order to be
sure that the page is fully rendered before the
image is generated.
The default value is set to 100 ms.

Property Type Category Description
2 - 518 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
2.8.4 Statements
2 - 519

Chapter "Convertigo Objects"
Web
HANDLER STATEMENTS
2 - 520 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
HANDLER

OBJECT DESCRIPTION

Defines an event handler.

A Handler is similar to a Function except that it is automatically executed when the

associated event occurs. Events that can be associated with it are:

 Transaction starting event, which is fired when Convertigo starts executing the client

request to a transaction,

 XML generated event, which is fired when Convertigo has generated the XML response,

just before the transaction ends.

Notes:

 A Handler contains other statements that define the actions to be performed. It can return

a result value (empty string by default). If cancel is returned by the Transaction starting

Handler, the rest of the transaction execution is canceled.

 Handlers can only be added to a transaction, one Handler of each event type per

transaction.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Event type String standard Defines the handler associated event type.
Handlers can be associated to the following
event types:
• TransactionStarted event type:

executed when the transaction start event
occurs,

• XmlGenerated event type: executed when
the XML generated event occurs.

Infinite loop protection boolean standard Defines whether the handler should be protected
against infinite loops in transaction.
If set to true (default value), the handler
prevents infinite loops by throwing a Convertigo
Engine exception when an infinite loop is
detected.
Default value should not be changed unless you
specifically want the handler to authorize loops in
transaction.

Is active boolean standard Defines whether the statement is active.
2 - 521

Chapter "Convertigo Objects"
Web
EXAMPLES

Example 1: transaction start Handler

Let’s consider the examples defined for several statements, like Browser property change

statement, Credentials statement, Context Get statement or Exception statement. These

examples all explain the need to add statements in transaction start Handlers:

 Browser property change statement or Credentials statement are to be executed before

the transaction connects to the target website and executes Screen classes handlers,

 Context Get statement, If statement or Exception statement are set in this Handler

because of the transaction behavior that is implemented (tests on variables values before

connecting to websites).

In all cases, the Handlers are created with the following parameters:

Handler [

event type=TransactionStarted

result=<empty>

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 294: Transaction start Handler - Configuration example

Result String standard Defines the handler's default resulting value.
Depending on the Event type, this property can
be chosen among several available values.
For a Transaction starting Handler, this property
can take the following values:
• <empty> or "": continues the transaction

execution,
• cancel: stops the transaction and cancels

the rest of the transaction execution.
Note: The Handler's default return value defined
thanks to this property can be overridden by a
child Return statement.

Property Type Category Description
2 - 522 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
The transaction start Handlers are created in the Functions folder of each transaction and

appear as folows in the Projects view.

 The transaction start Handlers including statements having to be executed before the

transaction connects to the target website appear as follows in the Projects view:

 Figure 2 - 295: Transaction start Handler - Objects in Projects view

 The transaction start Handlers that are set because of the transaction behavior that is

implemented appear as follows in the Projects view:
2 - 523

Chapter "Convertigo Objects"
Web
 Figure 2 - 296: Transaction start Handler - Objects in Projects view

We can observe that on one of these transaction start Handlers, the default result value is

overridden by a Return statement returning "cancel" value, whereas the Handler result

value is empty:

 Figure 2 - 297: Transaction start Handler - Return statement overridding the default empty result value
2 - 524 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
SCREEN CLASS ENTRY HANDLER

OBJECT DESCRIPTION

Defines a screen class entry handler.

A Handler is similar to a Function except that it is automatically executed when the

associated event occurs. The Screen class entry handler is a handler associated with the entry

on a screen class event. It is executed when Convertigo detects the screen class

corresponding to this Screen class entry handler, before executing the extraction rules

associated with this screen class.

In other words, a Screen class entry handler is executed when arriving on the screen class

associated with this handler.

Notes:

 A Screen class entry handler contains other statements that define the actions to be

performed on this screen class. It can return a result value (redetect by default as it is

an entry handler).

 Screen class entry handlers can only be added to a transaction, one Screen class entry

handler for each screen class per transaction.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Infinite loop protection boolean standard Defines whether the handler should be protected
against infinite loops in transaction.
If set to true (default value), the handler
prevents infinite loops by throwing a Convertigo
Engine exception when an infinite loop is
detected.
Default value should not be changed unless you
specifically want the handler to authorize loops in
transaction.

Is active boolean standard Defines whether the statement is active.
2 - 525

Chapter "Convertigo Objects"
Web
EXAMPLES

Example 1

Let’s consider the US directory website. Every page of this site contains a search form on its

top:

Result String standard Defines the handler's default resulting value.
Depending on the handler type, this property can
be chosen among several available values.
For a Screen class entry handler, this property
can take the following values:
• <empty> or "": goes on and extracts data

using extraction rules,
• continue: similar to <empty> value,
• redetect: does not extract data and

redetects a new screen class,
• skip: stops the transaction without

extracting data.
Note: The Handler's default return value defined
thanks to this property can be overridden by a
child Return statement.

Screen class String standard Defines the screen class to be monitored.
This property allows to associate the Screen
class handler with the screen class on which it is
executed. The possible values for this property
are generated from the screen classes defined in
the connector.
If the screen class is renamed in the connector,
the Screen class property of associated Screen
class handlers (entry or exit) are automatically
updated.

Property Type Category Description
2 - 526 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 298: Screen class entry handler - US directory website pages with search form

A searchBusiness transaction, which defines three variables named business,

cityZIPcode, and state, sets those three values into search form input fields and launch a

search by clicking on the Search button.

The transaction is able to fill the search form on the three pages of the US directory website

that are identified by screen classes in the project. The actions to perform on every screen are

defined thanks to a Function statement named setSearchInputs as follows:

 set Business input,

 set City / ZIP code input,

 select State in combobox,

 click on the Search button.

The transaction may start on a page that is not recognized as belonging to a screen class

defined in the project, it will be recognized as belonging to the Default_screen_class

screen class. In this case, the transaction displays a custom error message depending on the

web page URL.

Based on previous specifications, the transaction has actions to perform on four different
2 - 527

Chapter "Convertigo Objects"
Web
screen classes. For this purpose, four Screen class entry handlers are created in the

transaction, with the following parameters (for example for the SearchBusinessPage screen

class):

Screen class entry handler [

screen class=SearchBusinessPage

result=continue

]

These parameters are edited in the Properties view of the Convertigo Studio (for example for

SearchBusinessPage Screen class entry handler):

 Figure 2 - 299: Screen class entry handler - Configuration example

These Screen class entry handlers are created in the Functions folder of the transaction,

containing statements used to implement the transaction behavior described above, and

appear as follows in the Projects view:
2 - 528 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 300: Screen class entry handler - Objects in Projects view

When executing one of the test cases defined for the transaction, the statements contained in

Screen class entry handlers are executed depending on the detected screen class.

Example 2

Let’s consider the searchGoogle transaction set in the context of the "Starting With

Convertigo Web Integrator" Quick Guide. It contains three Screen class entry handlers,

defined to handle the actions to perform on the different screen classes met while navigating

on Google website. One of these Screen class entry handlers is called

onGoogleComSearchPageEntry, in order to handle the arrival on Google.com search page.
2 - 529

Chapter "Convertigo Objects"
Web
The purpose of the onGoogleComSearchPageEntry Screen class entry handler is to

execute statements implementing the following behavior when accessing the Google.com

search homepage:

 input the searched keyword in the field,

 click on the Google Search button.

The onGoogleComSearchPageEntry Screen class entry handler appears as follows:

 in the Projects view of the Convertigo Studio:

 Figure 2 - 301: Screen class entry handler - Objects in Projects view

 in the Properties view of the Convertigo Studio:
2 - 530 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 302: Screen class entry handler - Object properties

The Screen Class property is set to googleComSearchPage screen class so as the

onGoogleComSearchPageEntry Screen class entry handler is triggered on detection of the

googleComSearchPage screen class.

The Result property is set to redetect, causing the new accessed screen class to be

detected after actions have been performed on the current page.
2 - 531

Chapter "Convertigo Objects"
Web
SCREEN CLASS EXIT HANDLER

OBJECT DESCRIPTION

Defines a screen class exit handler.

A Handler is similar to a Function except that it is automatically executed when the

associated event occurs. The Screen class exit handler is a handler associated with the exit

from a screen class event. It is executed when Convertigo detects the screen class

corresponding to this Screen class exit handler, after having executed the extraction rules

associated with this screen class.

In other words, a Screen class exit handler is executed when leaving the screen class

associated with this handler.

Notes:

 A Screen class exit handler contains other statements that define the actions to be

performed on this screen class. It can return a result value (accumulate by default as it is

an exit handler).

 Screen class exit handlers can only be added to a transaction, one Screen class exit

handler for each screen class per transaction.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Infinite loop protection boolean standard Defines whether the handler should be protected
against infinite loops in transaction.
If set to true (default value), the handler
prevents infinite loops by throwing a Convertigo
Engine exception when an infinite loop is
detected.
Default value should not be changed unless you
specifically want the handler to authorize loops in
transaction.

Is active boolean standard Defines whether the statement is active.
2 - 532 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the searchGoogle transaction set in the context of the "Starting With

Convertigo Web Integrator" Quick Guide. It contains one Screen class exit handler defined to

handle the actions to perform on the screen class met while navigating on Google website and

from which we want to extract data. This Screen class exit handler is called

onGoogleResultsPageCurrentExit, in order to handle the leaving from Google results

page.

The purpose of the onGoogleResultsPageCurrentExit Screen class exit handler is to

execute a specific statement implementing the following behavior when exiting Google results

page: click on the Next button.

The onGoogleResultsPageCurrentExit Screen class exit handler appears as follows:

 in the Projects view of the Convertigo Studio:

Result String standard Defines the handler's default resulting value.
Depending on the handler type, this property can
be chosen among several available values.
For a Screen class exit handler, this property can
take the following values:
• <empty> or "": stops the process and ends

the transaction,
• continue: similar to <empty> value,
• accumulate: accumulates extracted data

(data is extracted from last detected screen
class then added to any other extracted data)
and redetects a new screen class.

Note: The Handler's default return value defined
thanks to this property can be overridden by a
child Return statement.

Screen class String standard Defines the screen class to be monitored.
This property allows to associate the Screen
class handler with the screen class on which it is
executed. The possible values for this property
are generated from the screen classes defined in
the connector.
If the screen class is renamed in the connector,
the Screen class property of associated Screen
class handlers (entry or exit) are automatically
updated.

Property Type Category Description
2 - 533

Chapter "Convertigo Objects"
Web
 Figure 2 - 303: Screen class exit handler - Object in Projects view

 in the Properties view of the Convertigo Studio:
2 - 534 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 304: Screen class exit handler - Object properties

The Screen Class property is set to googleResultsPageCurrent screen class so as the

onGoogleResultsPageCurrentExit Screen class exit handler is triggered when leaving

the googleResultsPageCurrent screen class.

The Result property is set to accumulate, causing the data extracted from pages detected

as belonging to the googleResultsPageCurrent screen class to be accumulated under

the same tag in the XML output, and the new accessed screen class to be detected after

actions have been performed on the current page.
2 - 535

Chapter "Convertigo Objects"
Web
DEFAULT ENTRY HANDLER

OBJECT DESCRIPTION

Defines a transaction default entry handler.

A Handler is similar to a Function except that it is automatically executed when the

associated event occurs. The Default entry handler is a screen class entry handler, associated

with an entry on a screen class event. If present in a transaction, it is executed when no specific

screen class entry handler is defined for the currently detected screen class. In other words, it

is a generic screen class entry handler.

Thus, Default entry handler can be defined for multiple screen classes on which the

programmer knows that the same actions are to be done.

Beware that this handler will be executed for the Default_screen_class screen class if no

specific handler is defined for this screen class. As the Default_screen_class screen

class matches every page that is not defined in the connector, this handler can potentially be

executed on a lot of unmanaged pages. Such behaviors can lead to infinite loop transactions.

Notes:

 A Default entry handler contains other statements that define the actions to be performed.

It can return a result value (redetect by default as this is an entry handler).

 Default entry handlers can only be added to a transaction, one Default entry handler per

transaction.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Infinite loop protection boolean standard Defines whether the handler should be protected
against infinite loops in transaction.
If set to true (default value), the handler
prevents infinite loops by throwing a Convertigo
Engine exception when an infinite loop is
detected.
Default value should not be changed unless you
specifically want the handler to authorize loops in
transaction.

Is active boolean standard Defines whether the statement is active.
2 - 536 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the SalesForce website, famous CRM SaaS application. This website needs an

authentification thanks to a user / password:

 Figure 2 - 305: Default entry handler - SalesForce website authentication page

A Login transaction, which defines two variables named username and password, is written

to authenticate the user on SalesForce website. This transaction:

 fills the User Name and Password fields using the user / password variables,

 submits the authentication form to access to SalesForce welcome page.

When the authentication is properly done, the SalesForce website home page appears as

follows:

Result String standard Defines the handler's default resulting value.
Depending on the handler type, this property can
be chosen among several available values.
For a Default entry handler, this property can take
the following values:
• <empty> or "": goes on and extracts data

using extraction rules,
• continue: similar to <empty> value,
• redetect: does not extract data and

redetects a new screen class,
• skip: stops the transaction without

extracting data.
Note: The Handler's default return value defined
thanks to this property can be overridden by a
child Return statement.

Property Type Category Description
2 - 537

Chapter "Convertigo Objects"
Web
 Figure 2 - 306: Default entry handler - SalesForce website home page

A GoLeads transaction, which defines a variable named viewName, is implemented to access

to the list of leads, on the view named after the viewName variable value (which default value

is ConvertigoDemoView)

In order to access to the list of leads in SalesForce, the Leads tab has to be selected. No

matter on which screen class the transaction starts, the Leads tab is available for the user to

click on it. A Default entry handler is then created in order to add the clicking on Leads tab

action. It is created in the transaction, with the following parameters:

Default entry handler [

result=redetect

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 538 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 307: Default entry handler - Configuration example

The Default entry handler is created in the Functions folder of the transaction, including

statements performing actions on the website, and appears as follows in the Projects view:

 Figure 2 - 308: Default entry handler - Object in Projects view

When executing the GoLeads transaction after having executed the Login transaction, the

transaction starts on the home page of SalesForce website. This page is associated with the

HomePage screen class. As no specific screen class handler is defined for this screen class,
2 - 539

Chapter "Convertigo Objects"
Web
the Default entry handler is executed and the transaction accesses Leads tab.
2 - 540 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
DEFAULT EXIT HANDLER

OBJECT DESCRIPTION

Defines a transaction default exit handler.

A Handler is similar to a Function except that it is automatically executed when the

associated event occurs. The Default exit handler is an exit screen class handler, associated

with an exit from a screen class event. If present in a transaction, it is executed when no

specific screen class exit handler is defined for the currently detected screen class. In other

words, it is a generic screen class exit handler.

Thus, Default exit handler can be defined for multiple screen classes on which the programmer

knows that the same actions are to be done.

Beware that this handler will be executed for the Default_screen_class screen class if no

specific handler is defined for this screen class. As the Default_screen_class screen

class matches every page that is not defined in the connector, this handler can potentially be

executed on a lot of unmanaged pages. Such behaviors can lead to infinite loop transactions.

Notes:

 A Default exit handler contains other statements that define the actions to be performed. It

can return a result value (accumulate by default as it is an exit handler).

 Default exit handlers can only be added to a transaction, one Default exit handler per

transaction.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Infinite loop protection boolean standard Defines whether the handler should be protected
against infinite loops in transaction.
If set to true (default value), the handler
prevents infinite loops by throwing a Convertigo
Engine exception when an infinite loop is
detected.
Default value should not be changed unless you
specifically want the handler to authorize loops in
transaction.

Is active boolean standard Defines whether the statement is active.
2 - 541

Chapter "Convertigo Objects"
Web
Result String standard Defines the handler's default resulting value.
Depending on the handler type, this property can
be chosen among several available values.
For a Default exit handler, this property can take
the following values:
• <empty> or "": stops the process and ends

the transaction,
• continue: similar to <empty> value,
• accumulate: accumulates extracted data

(data is extracted from last detected screen
class then added to any other extracted data)
and redetects a new screen class.

Note: The Handler's default return value defined
thanks to this property can be overridden by a
child Return statement.

Property Type Category Description
2 - 542 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
FUNCTION

OBJECT DESCRIPTION

Defines a function that can be invoked.

A Function statement declares a new function for a transaction. It contains other statements

defining actions to be performed by the function. It can only be added under a transaction.

The Functions defined for a transaction can then be called from one or several handlers using

Call Function statements (to perform the same actions on several screen classes for example).

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the US directory website. Every page of this site contains a search form on its

top:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.
2 - 543

Chapter "Convertigo Objects"
Web
 Figure 2 - 309: Function statement - US directory website pages with search form

A searchBusiness transaction, which defines three variables named business,

cityZIPcode, and state, sets those three values into search form input fields and launch a

search by clicking on the Search button.

As the transaction must be able to fill the search form on every page of the US directory

website, it has to define screen class handlers for each existing screen class of the connector.

But, the actions to perform on each screen class would be the same:

 set Business input,

 set City / ZIP code input,

 select State in combobox,

 click on the Search button.

To avoid defining three times the same statements in different screen class handlers, a

Function statement, named setSearchInputs, is created in the transaction to define once

the common actions filling the form. This statement doesn’t define specific parameters:

Function [

]

2 - 544 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
It is created in the Functions folder of the transaction, next to Screen class handlers and

contains statements used to implement the transaction behavior described above. It appears

as follows in the Projects view:

 Figure 2 - 310: Function statement - Object in Projects view

This common Function is then called in every screen class handler thanks to Call Function

statements. For more information about those statements, see the documentation and
2 - 545

Chapter "Convertigo Objects"
Web
example of Call Function statement object.

When executing test cases defined for the transaction, starting from every page from US

directory website, the transaction does the same actions (described above) and searches the

business.
2 - 546 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
FLOW CONTROL STATEMENTS
2 - 547

Chapter "Convertigo Objects"
Web
CONTAINER (WEB)

OBJECT DESCRIPTION

Defines a statement able to contain other statements.

The Container statement can contain a list of statements that have to be grouped. It has no

effects on the statements execution order.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider a Convertigo user developping a complex transaction, for example the

searchGoogleWithLimit transaction set in the context of the "Starting With Convertigo

Web Integrator" Quick Guide. This transaction, which defines two variables named keyword

and maxPages, searches for the keyword in Google search engine and accumulates the

results of maxPages pages into an XML structure thanks to a Table extraction rule.

Several implementations are possible to manage the limited number of result pages to browse.

Two of them are:

 decrementing the maxPages variable and compare it with zero,

 incrementing a new counter variable and compare it to maxPages variable.

In order to test different implementations of the same actions, it can be useful to create

Container statements grouping statements of the same implementation together. These

containers can then be disabled to easily test one solution or the other.

Container statements don’t define specific parameters:

Container [

]

They are created in the Functions folder of the transaction, under the corresponding Screen

class handlers and contain various other statements used to implement the transaction

behavior. They appear as follows in the Projects view, enabled or disabled:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.
2 - 548 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 311: Container statement - Enabled and disabled objects in Projects view

When disabling one or the two other Container statements, all child statements of disabled

Container are not reachable, meaning that they won’t be executed when the transaction runs.

Thanks to diabling one container or the two others, executing the test case defined for the

transaction will test one or the other implementation.
2 - 549

Chapter "Convertigo Objects"
Web
IF

OBJECT DESCRIPTION

Defines an IF conditional statement based on a JavaScript condition.

The If statement is one of the HTML transaction conditional statements. It conditionally

executes a block of statements, depending on the fulfillment of a condition expression. In other

words, if the condition is fulfilled, child statements are executed.

The condition, set in the Condition property, is a JavaScript expression that is evaluated

during the transaction execution as true or false.

Note: In Convertigo Studio, when an If statement is created in a handler, it can be easily

replaced by an IfThenElse, using the right-click menu on the statement and choosing the

option Change to > IfThenElse. The Condition property remains the same and the

statements present in the If are moved to the Then sub-statement.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the SalesForce website, famous CRM SaaS application. This website needs an

authentification thanks to a user / password:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Condition JS expression standard Defines the block condition expression.
This property is a JavaScript expression that will
be evaluated as condition (true or false) in
order to decide whether to execute or not the
child statements.

Is active boolean standard Defines whether the statement is active.
2 - 550 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 312: If statement - SalesForce website authentication page

A Login transaction, which defines two variables named username and password, is written

to authenticate the user on SalesForce website. This transaction:

 fills the User Name and Password fields using the user / password variables,

 submits the authentication form to access to SalesForce welcome page.

When the authentication is not correct, SalesForce website displays an error message,

recognized by Convertigo as the LoginFailedPage screen class. In this case, and when the

username / password is not provided, the transaction raises a Convertigo Engine Exception.

To detect when username / password is not provided, an If statement is created in the

transaction, with the following parameters:

If [

condition: username == null || username == ""

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 551

Chapter "Convertigo Objects"
Web
 Figure 2 - 313: If statement - Configuration example

The Condition property is set to a complex JavaScript expression that tests at once if the

username variable value is not provided (==null) or if it equals an empty string (="").

The statement is created in the Functions folder of the transaction, under the transaction start

event handler and contains other statements such as an Exception statement, and appears as

follows in the Projects view:
2 - 552 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 314: If statement - Object in Projects view

When executing the test cases named TestCase_Empty defined for the Login transaction,

the transaction raises an Engine Exception by executing the Exception statement, as the

condition of the If statement is evaluated to true.
2 - 553

Chapter "Convertigo Objects"
Web
IFTHENELSE

OBJECT DESCRIPTION

Defines an IF...THEN...ELSE... conditional statement based on a JavaScript condition.

The IfThenElse statement is one of the HTML transaction conditional statements. It contains

two child steps (Then and Else) which are executed depending on the condition fulfillment:

 Then step and child steps are executed when the condition is verified,

 Else step and child steps are executed when the condition is not verified.

The condition, defined in the Condition property, is a JavaScript expression that is evaluated

during the transaction execution as true or false.

Note: In Convertigo Studio, when an IfThenElse statement is created in a handler, it can be

easily replaced by an If, using the right-click menu on the statement and choosing the option

Change to > If. The Condition property remains the same and the statements present in the

sub-statements are:

 statements present in the Then statement are moved to the If,

 statements present in the Else statement are deleted.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Condition JS expression standard Defines the block condition expression.
This property is a JavaScript expression that will
be evaluated as condition (true or false) in
order to decide whether to execute or not the
child statements.

Is active boolean standard Defines whether the statement is active.
2 - 554 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
WHILE

OBJECT DESCRIPTION

Defines a WHILE loop statement based on a JavaScript condition.

This statement executes a group of child statements until the condition expression set in the

Condition property is found to be false.

Note: You can add other statements to this statement: these are the statements executed in

the loop.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider a fillForm transaction, which defines one multivaluated variable named

inputs. This transaction sets input field values into a web page containing a FORM HTML

element.

As the transaction doesn’t know in advance the number of inputs to fill in the FORM, it is

implemented to loop on each element of the inputs variable, dynamically received from the

caller, and to set each value in the nth HTML INPUT element of the web page. When there is

no more INPUT element to fill, the transaction exits the loop and ends.

In order to loop on each element of the inputs variable, a While statement is created in the

fillForm transaction with the following parameters:

While [

condition: iterator < inputs.length

]

These parameters are edited in the Properties view of the Convertigo Studio:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Condition JS expression standard Defines the block condition expression.
This property is a JavaScript expression that will
be evaluated as condition (true or false) in
order to decide whether to execute or not the
child statements.

Is active boolean standard Defines whether the statement is active.
2 - 555

Chapter "Convertigo Objects"
Web
 Figure 2 - 315: While statement - Configuration example

The Condition property is set to a JavaScript expression testing the value of the counter

variable, named iterator, against the length of the inputs variable.

The statement is created in the Functions folder of the transaction, under the corresponding

Screen class handler cand contains other statements used to implement the transaction

behavior described above. It appears as follows in the Projects view:
2 - 556 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 316: While statement - Object in Projects view

The test case defined for the transaction contains three values in inputs variable. When

executing it on Google search page, containing a FORM element with only one INPUT to fill, the

transaction sets the first value of inputs variable into the INPUT element and exists the loop

as no INPUT element is found for the next value.

Executing it on a web page that contains more than three INPUT elements to fill, the

transaction will stop after three loops because the iterator variable value will be bigger than

the inputs variable length.
2 - 557

Chapter "Convertigo Objects"
Web
DO WHILE

OBJECT DESCRIPTION

Defines a DO...WHILE loop statement based on a JavaScript condition.

This statement executes a group of child statements once, then repeats execution of the loop

until the condition expression set in the Condition property is found to be false.

Note: You can add other statements to this statement: these are the statements executed in

the loop.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Condition JS expression standard Defines the block condition expression.
This property is a JavaScript expression that will
be evaluated as condition (true or false) in
order to decide whether to execute or not the
child statements.

Is active boolean standard Defines whether the statement is active.
2 - 558 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
RETURN (WEB)

OBJECT DESCRIPTION

Defines a RETURN statement.

A Return statement exits from the current function or handler and returns a value from it. The

returned value is specified in the Expression property as a JavaScript expression evaluated

during the transaction execution.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the SalesForce website, famous CRM SaaS application. This website needs an

authentification thanks to a user / password:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression standard Defines the expression evaluated to give the
statement value.
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the statement's result.

Is active boolean standard Defines whether the statement is active.
2 - 559

Chapter "Convertigo Objects"
Web
 Figure 2 - 317: Return statement - SalesForce website authentication page

In the context of a mashup application including a SalesForce widget, we want the user to be

able to customize its user / password. A PreferencesRegistration transaction, which

defines two variables named username and password, allows to register in Convertigo

context the user authentication values.

Then, a LoginFromPreferences transaction, which does not define any variable,

authenticates the user on SalesForce website using the previously saved username and

password.

When the user authentication values are not previously registered in the Convertigo context,

case detected thanks to an If statement testing the retrieved values, the transaction is aborted

before connecting to SalesForce website.

To do so, a Return statement is created with the following parameters:

Return [

expression: "cancel"

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 560 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 318: Return statement - Configuration example

The Return statement is created in the Functions folder of the transaction, in the transaction

start handler and appears as follows in the Projects view:
2 - 561

Chapter "Convertigo Objects"
Web
 Figure 2 - 319: Return statement - Object in Projects view

We can observe that the default result value of the start transaction handler is empty, it is

visible in the handler properties:
2 - 562 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 320: Return statement - Start transaction handler properties

This result value is overridden by the Return statement when the username is tested null or

empty.
2 - 563

Chapter "Convertigo Objects"
Web
BREAK

OBJECT DESCRIPTION

Defines a BREAK statement.

A Break statement terminates the current loop statement.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider a fillForm transaction, which defines one multivaluated variable called

inputs. This transaction sets input field values into a web page containing a FORM HTML

element.

As the transaction doesn’t know in advance the number of inputs to fill in the FORM, it is

implemented to loop on each element of the inputs variable, dynamically received from the

caller, and to set each value in the nth HTML INPUT element of the web page. But when there

is no more INPUT element to fill, the transaction must exit the loop and end.

To do so, a Break statement is created in case no nth INPUT element is found. This statement

doesn’t define specific parameters:

Break [

]

It is created in the Functions folder of the transaction, under the corresponding Screen class

handler and various other statements used to implement the transaction behavior described

above. It appears as follows in the Projects view:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression standard Defines the expression evaluated to give the
statement value.
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the statement's result.

Is active boolean standard Defines whether the statement is active.
2 - 564 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 321: Break statement - Object in Projects view

The test case defined for the transaction contains three values in inputs variable. When

executing it on Google search page, containing a FORM element with only one INPUT to fill, the

transaction:

 sets the first value of inputs variable into the INPUT element of the web page,

 exists the loop thanks to the Break statement configured when no INPUT element is found

for the next value.
2 - 565

Chapter "Convertigo Objects"
Web
 Figure 2 - 322: Break statement - Executing fillForm transaction on Google search page
2 - 566 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
CALL FUNCTION

OBJECT DESCRIPTION

Call any Function statement defined in the same transaction.

If Function statements have been defined for a given transaction, you can call them by setting

a Call function statement in any handler of the given transaction.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the US directory website. Every page of this site contains a search form on its

top:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Function name String standard Defines the name of the function to call.
This property allows to choose the Function
statement to call by selecting it in a list of the
available ones for the current transaction.

Is active boolean standard Defines whether the statement is active.
2 - 567

Chapter "Convertigo Objects"
Web
 Figure 2 - 323: Call function statement - US directory website pages with search form

A searchBusiness transaction, which defines three variables named business,

cityZIPcode, and state, sets those three values into search form input fields and launch a

search by clicking on the Search button.

As the transaction must be able to fill the search form on every page of the US directory

website, it has to define screen class handlers for each existing screen class of the connector.

But, the actions to perform on each screen class would be the same:

 set Business input,

 set City / ZIP code input,

 select State in combobox,

 click on the Search button.

To avoid defining three times the same statements in different screen class handlers, a

Function statement, named setSearchInputs, is created in the transaction to define once

the common actions filling the form. For more information about Function statement, see the

documentation and example of Function statement object.

To call this common Function in every screen class handler, three identical Call function
2 - 568 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
statements are created with the following parameter:

Call function [

function name=setSearchInputs

]

They are created in the Functions folder of the transaction, under corresponding Screen class

handlers. They appear as follows in the Projects view:
2 - 569

Chapter "Convertigo Objects"
Web
 Figure 2 - 324: Call function statement - Objects in Projects view

The one parameter of each Call function statement is edited in the Properties view of the

Convertigo Studio:
2 - 570 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 325: Call function statement - Configuration example

When executing test cases defined for the transaction, starting from any page of US directory

website, the transaction does the same actions described above.
2 - 571

Chapter "Convertigo Objects"
Web
IFXPATHEXISTS

OBJECT DESCRIPTION

Defines an IF conditional statement looking for node(s) on a web page.

The IfXpathExists statement is one of the HTML transaction conditional statements. It

conditionally executes a block of statements, depending on the fulfillment of a condition

expression. In other words, if the condition is fulfilled, child statements are executed.

The condition is the existence in the current web page of nodes matching the XPath defined

through the XPath property.

Note: In Convertigo Studio, when an IfXpathExists statement is created in a handler, it can be

easily replaced by an IfXpathExistsThenElse, using the right-click menu on the statement and

choosing the option Change to > IfXpathExistsThenElse. The XPath property remains the

same and the statements present in the IfXpathExists are moved to the Then sub-statement.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.

XPath JS expression standard Defines the XPath expression to test.
This property is a JavaScript expression that is
evaluated during the transaction execution as an
XPath.
The execution of this XPath on the web page
DOM is used as a condition in order to decide
whether to execute or not the child statements:
• true if one or several nodes are matching

the XPath,
• false if no node matches.
2 - 572 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
IFXPATHEXISTSTHENELSE

OBJECT DESCRIPTION

Defines an IF...THEN...ELSE... conditional statement looking for node(s) on a web page.

The IfXpathExistsThenElse statement is one of the HTML transaction conditional statements.

It contains two child steps (Then and Else) which are executed depending on the condition

fulfillment:

 Then step and child steps are executed when the condition is verified,

 Else step and child steps are executed when the condition is not verified.

The condition is the existence in the current web page of nodes matching the XPath defined

through the XPath property.

Note: In Convertigo Studio, when an IfXpathExistsThenElse statement is created in a handler,

it can be easily replaced by an IfXpathExists, using the right-click menu on the statement and

choosing the option Change to > IfXpathExists. The XPath property remains the same and

the statements present in the sub-statements are:

 statements present in the Then statement are moved to the IfXpathExists,

 statements present in the Else statement are deleted.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.

XPath JS expression standard Defines the XPath expression to test.
This property is a JavaScript expression that is
evaluated during the transaction execution as an
XPath.
The execution of this XPath on the web page
DOM is used as a condition in order to decide
whether to execute or not the child statements:
• true if one or several nodes are matching

the XPath,
• false if no node matches.
2 - 573

Chapter "Convertigo Objects"
Web
JAVASCRIPT STATEMENTS
2 - 574 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
TRANSACTION JS

OBJECT DESCRIPTION

Defines a scripting statement.

This helpful statement allows to handle JavaScript code that will be executed in the transaction

scope. This JavaScript code is able to:

 initialize variables,

 perform complex calculations,

 access the context object to get useful properties such as contextID, httpSession,

isCacheEnabled, lockPooledContext, etc.,

 use some context methods to manipulate the result XML DOM (only in the transaction XML

Generated handler), encode and decode data, abort transaction, etc.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider a fillForm transaction, which defines one multivaluated variable named

inputs. This transaction sets input field values into a web page containing a FORM HTML

element.

As the transaction doesn’t know in advance the number of inputs to fill in the FORM, it is

implemented to loop on each element of the inputs variable, dynamically received from the

caller, and to set each value in the nth HTML INPUT element of the web page. When there is

no more INPUT element to fill, the transaction exits the loop and ends.

In order to loop on each element of the inputs variable and find the corresponding nth INPUT

element in the web page, a counter variable has to be declared before the loop and

incremented in each loop. To do so, two Transaction JS statements are created in the

fillForm transaction, one before the loop, one in the loop. These statements are created

with the following parameters:

 for the declaration of the variable:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression standard Defines the expression evaluated to give the
statement value.
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the statement's result.

Is active boolean standard Defines whether the statement is active.
2 - 575

Chapter "Convertigo Objects"
Web
Transaction JS [

expression: var iterator = 0;

]

 for the incrementation of the variable:

Transaction JS [

expression: iterator++;

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 326: Transaction JS statement - Configuration example

 Figure 2 - 327: Transaction JS statement - Configuration example

The Expression property is set for both statements to a JavaScript expression representing

the script to be executed.

The statements are created in the Functions folder of the transaction, under the

corresponding Screen class handler and various other statements used to implement the

transaction behavior described above. They appear as follows in the Projects view:
2 - 576 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 328: Transaction JS statement - Objects in Projects view

The test case defined for the transaction contains three values in inputs variable. When

executing it on Google search page, containing a FORM element with only one INPUT to fill, the

transaction sets the first value of inputs variable into the INPUT element and exists the loop

as no INPUT element is found for the next value.

Executing it on a web page that contains more than three INPUT elements to fill, the

transaction will stop after three loops because the iterator variable value will be bigger than

the inputs variable length.
2 - 577

Chapter "Convertigo Objects"
Web
USER INPUT CONTROL STATEMENT
2 - 578 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
KEY ACTION

OBJECT DESCRIPTION

Simulates a key action.

This statement enables Convertigo to send key events to any HTML element from the target

web page.

The event can be one of the following types:

 keypress: simulates a keypress event,

 keydown: simulates a keydown event,

 keyup: simulates a keyup event.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Action String standard Defines the JavaScript action corresponding to
the event to perform.
Depending of the statement, this property can
take several values. These values are indicated
in the object's description.

Character code int standard Defines the ASCII character code for any
alphanumeric key.
This property allows setting the Unicode
character associated with the depressed key.
Otherwise, the value is zero and the key code
value can be set in Key code property.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Delay if XPath not
found

long standard Defines the maximum delay the statement waits
if the XPath doesn't currently exists.
When no node in the page DOM matches the
XPath defined in XPath property, the statement
waits for it to match up to this delay, set in
milliseconds.
Convertigo tries to evaluate the specified XPath
while receiving a web page or executing
JavaScript in it. Once the XPath matches at least
one node of the page, the statement continues its
action.
Note: It is equivalent to defining a statement Wait
synchronization with an XPath synchronizer
before this statement, waiting for the same
XPath.

Is active boolean standard Defines whether the statement is active.
2 - 579

Chapter "Convertigo Objects"
Web
Key code int standard Defines the key code.
This property allows setting the virtual key code
value to be sent, if the key has a key code value.
Otherwise, the value is zero and the character
code can be set in Character code property. For
more information on key codes, see Appendix
"Keycodes table".

Press alt key boolean standard Defines whether the "alt" key is to be depressed
when firing the event.
On some platforms, this key may map to an
alternative key name.

Press ctrl key boolean standard Defines whether the "ctrl" key is to be
depressed when firing the event.

Press meta key boolean standard Defines whether the "meta" key is to be
depressed when firing the event.
On some platforms, this key may map to an
alternative key name.

Press shift key boolean standard Defines whether the "shift" key is to be
depressed when firing the event.

Property Type Category Description
2 - 580 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Synchronization TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

XPath JS expression standard Defines the XPath expression of elements on
which the statement applies.
Depending on the statement, the execution of
this XPath on the web page DOM can result in a
single Node or a NodeList.

Property Type Category Description
2 - 581

Chapter "Convertigo Objects"
Web
INPUT HTML SET VALUE

OBJECT DESCRIPTION

Fills an HTML input field.

This statement enables Convertigo to set a value in a text type input HTML element.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Delay if XPath not
found

long standard Defines the maximum delay the statement waits
if the XPath doesn't currently exists.
When no node in the page DOM matches the
XPath defined in XPath property, the statement
waits for it to match up to this delay, set in
milliseconds.
Convertigo tries to evaluate the specified XPath
while receiving a web page or executing
JavaScript in it. Once the XPath matches at least
one node of the page, the statement continues its
action.
Note: It is equivalent to defining a statement Wait
synchronization with an XPath synchronizer
before this statement, waiting for the same
XPath.

Expression JS expression standard Defines the expression evaluated to give the text
to input.
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the data to be set as input.

Is active boolean standard Defines whether the statement is active.
2 - 582 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Synchronization TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

UI event boolean standard Defines whether UI events must be used to
change the item value.
Setting this property to false is saving CPU
time, but sometimes the target website does not
have the full behavior it has with a real user. In
this case, setting this property to true will help
having a behavior closer to the original site.

XPath JS expression standard Defines the XPath expression of elements on
which the statement applies.
Depending on the statement, the execution of
this XPath on the web page DOM can result in a
single Node or a NodeList.

Property Type Category Description
2 - 583

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the SalesForce website, famous CRM SaaS application. This website needs an

authentification thanks to a user / password:

 Figure 2 - 329: Input HTML set value statement - SalesForce website authentication page

A Login transaction, which defines two variables named username and password, is written

to authenticate the user on SalesForce website.

The Login transaction:

 fills the User Name and Password fields using the user / password variables,

 submits the authentication form to access to SalesForce welcome page.

When the authentication is not correct or when the username / password is not provided, the

transaction raises a Convertigo Engine Exception.

In order to fill the User Name and Password fields, Input HTML set value statements are

created in the transaction, with the following parameters:

 for the User Name field:

Input HTML set value [

xpath='//INPUT[@id="username"]'

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > HTML connector statements
examples in the New Project wizard.
2 - 584 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
expression: username

uiEvent=false

synchronization=[No Wait]

]

 for the Password field:

Input HTML set value [

xpath='//INPUT[@id="password"]'

expression=password

uiEvent=false

synchronization=[Wait time, timeout= 0 ms]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 330: Input HTML set value statement - Configuration example
2 - 585

Chapter "Convertigo Objects"
Web
 Figure 2 - 331: Input HTML set value statement - Configuration example

Expression property of both statements contains the JavaScript expression resulting in the

inputted value when evaluated, it is directly the transaction variable corresponding to each

field: username or password. The XPath property of both statements contains an Xpath

identifying precisely, thanks to an id attribute, each INPUT element from the web page DOM

on which the action has to be performed.

Synchronization property of both statements is set to No Wait, which is the default value of

this property, or Wait time with a timeout to 0ms. These two synchronization values are

equivalent and do not wait for anything to happen before continuing. In our case, these values

are set because no change is supposed to happen in the web page when filling these fields.

This property is edited for both statements in the Trigger editor:

 Figure 2 - 332: Input HTML set value statement - Synchronization property edition for No Wait
2 - 586 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 333: Input HTML set value statement - Synchronization property edition for Wait time 0ms

The statements are created in the Functions folder of the transaction, under the

corresponding Screen class handler, next to other statements that implement the transaction

behavior described above. It appears as follows in the Projects view:
2 - 587

Chapter "Convertigo Objects"
Web
 Figure 2 - 334: Input HTML set value statement - Objects in Projects view

When executing the test cases named TestCase_demo defined for the Login transaction,

the transaction authenticates correctly the user in Sales Force website and checks the check

box allowing to remember the user name.
2 - 588 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
INPUT HTML SET SELECTED

OBJECT DESCRIPTION

Selects an option in an HTML combo box.

This statement enables Convertigo to select an option in a select HTML element.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Delay if XPath not
found

long standard Defines the maximum delay the statement waits
if the XPath doesn't currently exists.
When no node in the page DOM matches the
XPath defined in XPath property, the statement
waits for it to match up to this delay, set in
milliseconds.
Convertigo tries to evaluate the specified XPath
while receiving a web page or executing
JavaScript in it. Once the XPath matches at least
one node of the page, the statement continues its
action.
Note: It is equivalent to defining a statement Wait
synchronization with an XPath synchronizer
before this statement, waiting for the same
XPath.

Expression JS expression standard Defines the expression evaluated to give the text
identifying the option to select.
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the data that identifies the option to be
selected in the combo box.
The option identification also depends on the
Selection mode property value.
Note: It is possible to select several option in a
same select by setting a JavaScript array
instead of a simple string variable in Expression
property.

Is active boolean standard Defines whether the statement is active.
2 - 589

Chapter "Convertigo Objects"
Web
Selection mode String standard Defines which mode is used to identify the
option to select.
There are three modes that can be used to
identify the option to select in the combo box:
• by index: the option is selected by its

index order in the options list. The
Expression property evaluation matches the
index of the sought option.

• by value: the option is selected by its
value attribute. The Expression property
evaluation matches the value attribute of of
the sought option.

• by content: the option is selected by its
text content. The Expression property
evaluation matches the text content of of the
sought option.

Property Type Category Description
2 - 590 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Synchronization TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

UI event boolean standard Defines whether UI events must be used to
change the item value.
Setting this property to false is saving CPU
time, but sometimes the target website does not
have the full behavior it has with a real user. In
this case, setting this property to true will help
having a behavior closer to the original site.

XPath JS expression standard Defines the XPath expression of elements on
which the statement applies.
Depending on the statement, the execution of
this XPath on the web page DOM can result in a
single Node or a NodeList.

Property Type Category Description
2 - 591

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the US directory website. Every page of this site contains a search form on its

top:

 Figure 2 - 335: Input HTML set selected statement - US directory website pages with search form

A searchBusiness transaction, which defines three variables named business,

cityZIPcode, and state, sets those three values into search form input fields and launch a

search by clicking on the Search button.

The searchBusiness transaction is able to fill the search form on the three pages of the US

directory website that are identified by screen classes in the project. The actions to perform on

every screen are defined thanks to a Function statement named setSearchInputs as

follows:

 set Business input,

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > HTML connector statements
examples in the New Project wizard.
2 - 592 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 set City / ZIP code input,

 select State in combobox,

 click on the Search button.

In order to select the state in State combo box, a Input HTML set selected statement is created

with the following parameters:

Input HTML set selected [

xpath='//SELECT[@class="form_select_state" and @id="qs"]'

expression: state

selection mode=by value

uiEvent=false

synchronization=[No Wait]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 336: Input HTML set selected statement - Configuration example

The XPath property contains an Xpath identifying precisely, thanks to an id attribute, the

SELECT element from the web page DOM on which the action has to be performed. The

Selection mode property defines that the entry to select is chosen by value, meaning that

the value attribute of the OPTION element to select equals the evaluated value of the

Expression property, which is simply set to the state transaction variable value.

Synchronization property is set to No Wait because no change is supposed to happen in

the web page when selecting the value in the combobox, so the transaction does not need to

wait before continuing. This property is edited in the Trigger editor:
2 - 593

Chapter "Convertigo Objects"
Web
 Figure 2 - 337: Input HTML set selected statement - Synchronization property edition

The statement is created in the Functions folder of the transaction, under the

setSearchInputs Function statement, next to other statements used to implement the

transaction behavior described above, and appears as follows in the Projects view:
2 - 594 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 338: Input HTML set selected statement - Object in Projects view

When executing test cases defined for the transaction, starting from every page from US

directory website, the transaction does the same actions (described above) and searches the

business.
2 - 595

Chapter "Convertigo Objects"
Web
INPUT HTML SET CHECKED

OBJECT DESCRIPTION

Checks / unchecks an HTML check box.

This statement enables Convertigo to check / uncheck a checkbox type input HTML

element.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Checked boolean standard Defines whether to check or uncheck the input.
If set to true, the item has to be checked. If set
to false, the item has to be unchecked.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Delay if XPath not
found

long standard Defines the maximum delay the statement waits
if the XPath doesn't currently exists.
When no node in the page DOM matches the
XPath defined in XPath property, the statement
waits for it to match up to this delay, set in
milliseconds.
Convertigo tries to evaluate the specified XPath
while receiving a web page or executing
JavaScript in it. Once the XPath matches at least
one node of the page, the statement continues its
action.
Note: It is equivalent to defining a statement Wait
synchronization with an XPath synchronizer
before this statement, waiting for the same
XPath.

Is active boolean standard Defines whether the statement is active.
2 - 596 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Synchronization TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

UI event boolean standard Defines whether UI events must be used to
change the item value.
Setting this property to false is saving CPU
time, but sometimes the target website does not
have the full behavior it has with a real user. In
this case, setting this property to true will help
having a behavior closer to the original site.

XPath JS expression standard Defines the XPath expression of elements on
which the statement applies.
Depending on the statement, the execution of
this XPath on the web page DOM can result in a
single Node or a NodeList.

Property Type Category Description
2 - 597

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the SalesForce website, famous CRM SaaS application. This website needs an

authentication thanks to a user / password:

 Figure 2 - 339: Input HTML set checked statement - SalesForce website authentication page

A Login transaction, which defines two variables named username and password, is written

to authenticate the user on SalesForce website.

The Login transaction:

 fills the username and password fields using the user / password variables,

 submits the authentication form to access to SalesForce welcome page.

When the authentication is not correct or when the username / password is not provided, the

transaction raises a Convertigo Engine Exception.

A Remember User Name check box is present in the login form. we could add additional

behavior to the transaction so it checks this check box while authenticating the user.

To do so, an Input HTML set checked statement is created in the transaction, with the following

parameters:

Input HTML set checked [

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > HTML connector statements
examples in the New Project wizard.
2 - 598 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
xpath='//INPUT[@id="rememberUn"]'

checked=true

uiEvent=false

synchronization=[Wait time, timeout= 0 ms]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 340: Input HTML set checked statement - Configuration example

Checked property is set to true so as the check box has to be checked by the transaction.

The XPath property contains an Xpath identifying precisely, thanks to an id attribute, the

INPUT element from the web page DOM on which the action has to be performed.

Synchronization property is set to No Wait because no change is supposed to happen in

the web page when checking this box, so the transaction does not need to wait before

continuing. This property is edited in the Trigger editor:

 Figure 2 - 341: Input HTML set checked statement - Synchronization property edition
2 - 599

Chapter "Convertigo Objects"
Web
The statement is created in the Functions folder of the transaction, under the corresponding

Screen class handler, next to other statements that implement the transaction behavior

described above. It appears as follows in the Projects view:

 Figure 2 - 342: Input HTML set checked statement - Object in Projects view

When executing the test cases named TestCase_demo defined for the Login transaction,

the transaction authenticates correctly the user in Sales Force website and checks the check

box allowing to remember the user name.
2 - 600 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
MOUSE ACTION

OBJECT DESCRIPTION

Creates a mouse action on an element of the web page.

This statement allows to trigger mouse events, provided that attributes of the accessed DOM

element manage such events.

For example, for a click on a target HTML object, this object can be a link (A HTML element)

or a button (INPUT type="button" element) or any HTML object the user can click on in

the web page.

Supported mouse events, defined in the Action property, are the following:

 click: simulates a mouse click event,

 mousedown: simulates a mousedown event (first part of a mouse click event, when mouse

button is clicked),

 mouseup: simulates a mouseup event (second part of a mouse click event, when mouse

button is released),

 mouseover: simulates a mouseover event (mouse is moved onto an element),

 mouseout: simulates a mouseout event (mouse is moved out of an element),

 mousemove: simulates a mousemove event (mouse is moved anywhere),

 mousedrag: simulates a mousedrag event (mouse drags an object),

 dblclick: simulates a dblclick event (mouse double-clicks an object),

 dragdrop: simulates a dragdrop event (mouse drags and drops an object).

The XPath defined in XPath property is applied on the web page to retrieve the element on

which the event has to be performed.

Note: For more complex actions, prefer to use the Mouse action advanced statement.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Action String standard Defines the JavaScript action corresponding to
the event to perform.
Depending of the statement, this property can
take several values. These values are indicated
in the object's description.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 601

Chapter "Convertigo Objects"
Web
Delay if XPath not
found

long standard Defines the maximum delay the statement waits
if the XPath doesn't currently exists.
When no node in the page DOM matches the
XPath defined in XPath property, the statement
waits for it to match up to this delay, set in
milliseconds.
Convertigo tries to evaluate the specified XPath
while receiving a web page or executing
JavaScript in it. Once the XPath matches at least
one node of the page, the statement continues its
action.
Note: It is equivalent to defining a statement Wait
synchronization with an XPath synchronizer
before this statement, waiting for the same
XPath.

Is active boolean standard Defines whether the statement is active.

Property Type Category Description
2 - 602 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the searchGoogleWithLimit transaction set in the context of the "Starting

With Convertigo Web Integrator" tutorial.

Synchronization TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

XPath JS expression standard Defines the XPath expression of elements on
which the statement applies.
Depending on the statement, the execution of
this XPath on the web page DOM can result in a
single Node or a NodeList.

Property Type Category Description
2 - 603

Chapter "Convertigo Objects"
Web
This transaction, which defines two variables named keyword and maxPages, searches for

this keyword in Google search engine and accumulates the results of maxPages pages into

an XML structure thanks to a Table extraction rule.

When accessing the Google.com search page, the transaction sets the keyword variable

value into the search field thanks to an Input HTML set value statement and clicks on the

"Google search" button to run the search. In order to perform this action, the transaction

implements a Mouse action statement called clickSearchButton.

The Mouse action statement is created in the searchGoogleWithLimit transaction with the

following parameters:

Mouse action [

xpath='//INPUT[@name="btnG" and @type="submit"]'

action=click

synchronization=[document completed: 1, timeout= 60000 ms]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 343: Mouse action statement - Configuration example

The Xpath property is matching the "Google Search" button as the action has to be performed

on this element from the page (INPUT element button of submit type named btnG). The

Action property is set to click which simulates a simple click on the element.

The Synchronization property indicates that, after triggering the action, the statement waits

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Web Integrator" tutorial or the procedure “Opening a sample project from
the Studio”, choosing to open Convertigo Samples and Demos >
Documentation samples > Web integration in the New Project wizard.
2 - 604 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
for one document to be fully loaded before continuing the transaction execution. This property

is edited in the Trigger editor:

 Figure 2 - 344: Mouse action statement - Synchronization property edition

The statement is created in the Functions folder of the transaction, under the corresponding

Screen class handler and appears as follows in the Projects view:
2 - 605

Chapter "Convertigo Objects"
Web
 Figure 2 - 345: Mouse action statement - Object in Projects view

When executing the test case defined for the transaction, it fills the keyword, clicks the button

and waits for the page to be reloaded (probably with the results page).
2 - 606 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
MOUSE ACTION ADVANCED

OBJECT DESCRIPTION

Creates a complex mouse action on an element or a position of the web page.

This statement allows to trigger complex mouse events, provided that attributes of the

accessed DOM element manage such events.

Supported mouse events, defined in the Action property, are the following:

 click: simulates a mouse click event,

 mousedown: simulates a mousedown event (first part of a mouse click event, when mouse

button is clicked),

 mouseup: simulates a mouseup event (second part of a mouse click event, when mouse

button is released),

 mouseover: simulates a mouseover event (mouse is moved onto an element),

 mouseout: simulates a mouseout event (mouse is moved out of an element),

 mousemove: simulates a mousemove event (mouse is moved anywhere),

 mousedrag: simulates a mousedrag event (mouse drags an object),

 dblclick: simulates a dblclick event (mouse double-clicks an object),

 dragdrop: simulates a dragdrop event (mouse drags and drops an object).

The XPath defined in XPath property is applied on the web page to retrieve the element on

which the event has to be performed. If the XPath property is empty, the mouse position can

be used to find an element on which perform the event.

The mouse position can be defined using the Client X and the Client Y properties or the

Screen X and the Screen Y properties.

Note: For simple actions, prefer to use the Mouse action statement.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Action String standard Defines the JavaScript action corresponding to
the event to perform.
Depending of the statement, this property can
take several values. These values are indicated
in the object's description.
2 - 607

Chapter "Convertigo Objects"
Web
Button JS expression standard Defines which mouse button is used during the
mouse event.
Some mouse events are triggered by the
depression or release of a mouse button. This
property is a JavaScript expression that is
evaluated during the transaction execution and
indicates which mouse button is used during this
state change.
This property can take the following values:
• zero: left button,
• one: middle button, if applicable,
• two: right button.
For mouse devices configured for left-handed
use, in which button actions are reversed, values
are reversed too (from right to left).

Client X JS expression standard Defines the client (web browser) relative X
coordinate (in pixels).
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the horizontal coordinate, relatively to the
top left corner of the DOM layout, at which the
event should occur.

Client Y JS expression standard Defines the client (web browser) relative Y
coordinate (in pixels).
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the vertical coordinate, relatively to the top
left corner of the DOM layout, at which the event
should occur.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Delay if XPath not
found

long standard Defines the maximum delay the statement waits
if the XPath doesn't currently exists.
When no node in the page DOM matches the
XPath defined in XPath property, the statement
waits for it to match up to this delay, set in
milliseconds.
Convertigo tries to evaluate the specified XPath
while receiving a web page or executing
JavaScript in it. Once the XPath matches at least
one node of the page, the statement continues its
action.
Note: It is equivalent to defining a statement Wait
synchronization with an XPath synchronizer
before this statement, waiting for the same
XPath.

Is active boolean standard Defines whether the statement is active.

Press alt key JS expression standard Defines whether the "alt" key is to be depressed
when firing the event.
This property is a JavaScript expression that is
evaluated during the transaction execution as a
boolean defining if the alt key should be
depressed when firing the event.
On some platforms, the alt key may map to an
alternative key name.

Property Type Category Description
2 - 608 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Press ctrl key JS expression standard Defines whether the "ctrl" key is to be
depressed when firing the event.
This property is a JavaScript expression that is
evaluated during the transaction execution as a
boolean defining if the ctrl key should be
depressed when firing the event.
On some platforms, the ctrl key may map to an
alternative key name.

Press meta key JS expression standard Defines whether the "meta" key is to be
depressed when firing the event.
This property is a JavaScript expression that is
evaluated during the transaction execution as a
boolean defining if the meta key should be
depressed when firing the event.
On some platforms, the meta key may map to an
alternative key name.

Press shift key JS expression standard Defines whether the "shift" key is to be
depressed when firing the event.
This property is a JavaScript expression that is
evaluated during the transaction execution as a
boolean defining if the shift key should be
depressed when firing the event.
On some platforms, the shift key may map to
an alternative key name.

Screen X JS expression standard Defines the absolute screen X coordinate (in
pixels).
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the horizontal coordinate, relatively to the
top left corner of the screen, at which the event
should occur.

Screen Y JS expression standard Defines the absolute screen Y coordinate (in
pixels).
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the vertical coordinate, relatively to the top
left corner of the screen, at which the event
should occur.

Property Type Category Description
2 - 609

Chapter "Convertigo Objects"
Web
Synchronization TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

XPath JS expression standard Defines the XPath expression of elements on
which the statement applies.
Depending on the statement, the execution of
this XPath on the web page DOM can result in a
single Node or a NodeList.

Property Type Category Description
2 - 610 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
CREATE EVENT

OBJECT DESCRIPTION

Creates an event on an element of the web page.

Event, as defined by W3C specifications, is defined in the Action property and can be one of

the following values:

 click,

 mousedown,

 mouseup,

 keydown,

 keyup,

 keypress,

 submit,

 mouseover,

 mouseout,

 mousemove,

 mousedrag,

 dblclick,

 dragdrop,

 focus,

 blur,

 select,

 change,

 reset,

 scroll,

 load,

 unload,

 abort,

 error,

 locate,

 move,

 resize,

 forward,

 help,

 back,
2 - 611

Chapter "Convertigo Objects"
Web
 text.

The element on which the event has to be performed in the web page is retrieved by the

execution of the XPath defined in XPath property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Action String standard Defines the JavaScript action corresponding to
the event to perform.
Depending of the statement, this property can
take several values. These values are indicated
in the object's description.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Delay if XPath not
found

long standard Defines the maximum delay the statement waits
if the XPath doesn't currently exists.
When no node in the page DOM matches the
XPath defined in XPath property, the statement
waits for it to match up to this delay, set in
milliseconds.
Convertigo tries to evaluate the specified XPath
while receiving a web page or executing
JavaScript in it. Once the XPath matches at least
one node of the page, the statement continues its
action.
Note: It is equivalent to defining a statement Wait
synchronization with an XPath synchronizer
before this statement, waiting for the same
XPath.

Is active boolean standard Defines whether the statement is active.
2 - 612 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the searchGoogleWithLimit transaction set in the context of the "Starting

With Convertigo Web Integrator" tutorial. This transaction, which defines two variables named

keyword and maxPages, searches for the keyword in Google search engine and

accumulates the results of maxPages pages into an XML structure thanks to a Table extraction

rule.

Synchronization TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

XPath JS expression standard Defines the XPath expression of elements on
which the statement applies.
Depending on the statement, the execution of
this XPath on the web page DOM can result in a
single Node or a NodeList.

Property Type Category Description
2 - 613

Chapter "Convertigo Objects"
Web
When accessing the Google.com search page, the transaction sets the keyword variable

value into the search field and clicks on the "Google search" button to run the search. This click

is perfomed by a Mouse action statement but can also be performed by a Create event

statement (for more information about Mouse action statement, see Mouse action statement

documentation and examples).

For this example, we duplicated the GoogleConnector HTML connector of this project into

the sample_refManual_statements project, renaming it to googleSearchConnector.

In the searchGoogleWithLimit transaction, we can disable the previously existing Mouse

action statement and define a Create event statement performing the click on the button. This

statement is created with the following parameters:

Create event [

action=click

xpath='//INPUT[@name="btnG" and @type="submit"]'

synchronisation=[document completed: 1, timeout= 60000 ms]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 346: Create event statement - Configuration example

The Action property is set to click which simulates the same action as the Mouse action

statement. The Xpath property is the same for both statements as the action has to be

performed on the same element from the page.

You can find the complete example project in the Studio. To open this
project, refer to the procedure described in the "Starting with Convertigo
Web Integrator" tutorial or the procedure “Opening a sample project from
the Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > HTML connector statements
examples in the New Project wizard.
2 - 614 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
The Synchronization property indicates that, after triggering the event, the statement waits

for one document to be fully loaded before continuing the transaction execution. This property

is edited in the Trigger editor:

 Figure 2 - 347: Create event statement - Synchronization property edition

The statement is created in the Functions folder of the transaction, under the corresponding

Screen class handler and appears as follows in the Projects view:
2 - 615

Chapter "Convertigo Objects"
Web
 Figure 2 - 348: Create event statement - Object in Projects view

When executing the test case defined for the transaction, it is the executed the same way as

it was before the replacement of the Mouse action statement.
2 - 616 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
INPUT HTML SET FILE

OBJECT DESCRIPTION

Selects a file in an HTML input field.

This statement enables Convertigo to set a value in a file type input HTML element.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Delay if XPath not
found

long standard Defines the maximum delay the statement waits
if the XPath doesn't currently exists.
When no node in the page DOM matches the
XPath defined in XPath property, the statement
waits for it to match up to this delay, set in
milliseconds.
Convertigo tries to evaluate the specified XPath
while receiving a web page or executing
JavaScript in it. Once the XPath matches at least
one node of the page, the statement continues its
action.
Note: It is equivalent to defining a statement Wait
synchronization with an XPath synchronizer
before this statement, waiting for the same
XPath.

File path JS expression standard JavaScript expression defining the file path,
including the file name, of the file to upload.
This file must be a local file. This path is either
absolute or relative to Convertigo environment.
Relative paths starting with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.

Is active boolean standard Defines whether the statement is active.
2 - 617

Chapter "Convertigo Objects"
Web
Synchronization TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

XPath JS expression standard Defines the XPath expression of elements on
which the statement applies.
Depending on the statement, the execution of
this XPath on the web page DOM can result in a
single Node or a NodeList.

Property Type Category Description
2 - 618 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
BROWSER CONTROL STATEMENTS
2 - 619

Chapter "Convertigo Objects"
Web
CREDENTIALS

OBJECT DESCRIPTION

Defines authentication credentials.

This statement allows setting credentials to access any application supporting basic

authentication (WWW-Authenticate). This statement can be used in a login transaction

where the caller provides credentials to access the target application.

Credentials set for this statement override the connector's credentials property. The statement

must be executed before any other statement possibly needing the same credentials. This

statement is usually set as part of a Start transaction handler (onTransactionStarted

event handler).

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the Convertigo Intranet website, used by Convertigo employees to access

internal company information. This website needs a basic authentification:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Force basic boolean expert Force sending Basic header with those
credentials for each HTML connector request.
If set to true, all requests sent by the HTML
connector for which these credentials were
positioned send credentials in the Basic header.

Is active boolean standard Defines whether the statement is active.

Password JS expression standard Defines the user password.
WWW-Authenticate password. May be any
JavaScript expression using transaction
variables.

User JS expression standard Defines the user name.
WWW-Authenticate user. May be any
JavaScript expression using transaction
variables.
2 - 620 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 349: Credentials statement - Intranet website with basic authentication

A GoToHolidaysApp transaction, which defines two variables named username and

password, is created to access the holidays management application for an employee. This

transaction:

 connects to Convertigo Intranet website,

 access the holidays application by clicking on the corresponding "Go" button. When doing

so, the basic authentication window pops up, as shown on previous figure.

For Convertigo to handle this authentication, a Credentials statement is created in the

transaction start handler with the following parameters:

Credentials [

user=username

password=password

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 621

Chapter "Convertigo Objects"
Web
 Figure 2 - 350: Credentials statement - Configuration example

This statement is created in the Functions folder of the transaction, under the transaction start

handler and appears as follows in the Projects view:
2 - 622 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 351: Credentials statement - Object in Projects view

When executing the test case defined for the GoToHolidaysApp transaction, user

authentication values are automatically send by Convertigo to basic authentication. Then the

transaction accesses the user’s holidays management application.
2 - 623

Chapter "Convertigo Objects"
Web
BROWSER PROPERTY CHANGE

OBJECT DESCRIPTION

Allows changing some properties of the embedded browser.

This statement allows a transaction to change some of the properties of the Mozilla-based

Convertigo HTML decoder. For each property, you can specify if the property has to be

modified and the new value of this property, or if the property keeps its unchanged value.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attachment enable
value

AttachmentMod
e

standard Forces the Attachment retrieval property on
(enabled) or off (disabled), or leaves it
unchanged.
By default, attachment files are not downloaded
when transfer dialogs open, in Studio or Server.
Using this statement, Attachment retrieval
property value can be changed and has the
following effects:
• If set to force on, attachment files are

automatically downloaded when transfer
dialogs open and are recoverable by the Get
attachment extraction rule.

• If set to force off, attachment files are
never downloaded when transfer dialogs
open.

• If set to no change, it keeps the default
value (disabled) or the previously set value, if
another Browser property change statement
changed the value previously in the same
context.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Convertigo mode ConvertigoMod
e

expert Applies changes on Studio, Engine, or both.
Defines in which mode the browser setting must
be active:
• Studio mode: settings only valid in

Convertigo Studio,
• Engine mode: settings only valid in

Convertigo Server,
• Both modes: settings valid in Convertigo

Server as well as in Studio (default value).
2 - 624 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Image rendering
enable value

ImageMode standard Forces the browser Image rendering property
on (enabled) or off (disabled), or leaves it
unchanged.
By default, the Image rendering property value
depends on the environment:
• in Studio, Image rendering property is

enabled by default,
• in Server, the default value is based on a

property configured in Administration
Console Configuration page, in advanced
properties of HTML parser configuration tab.

Using this statement, Image rendering property
value can be changed and has the following
effects:
• If set to force off, the HTML decoder does

not render images, which speeds up the
process. It is used mostly for production
server mode, so another way to do the same
behavior is to always set this property to no
change with a default value configured to
false in the Administration Console.

• If set to force on, the HTML decoder
always renders images, which slows down a
little the process.

• If set to no change, it keeps the default
value or the previously set value, if another
Browser property change statement changed
the value previously in the same context.

Is active boolean standard Defines whether the statement is active.

JavaScript enable
value

JavascriptMode standard Forces the browser JavaScript property on
(enabled) or off (disabled), or leaves it
unchanged.
By default, the JavaScript code present in target
HTML pages is executed, in Studio or Server,
and the resulting DOM reflects the JavaScript
execution.
Using this statement, JavaScript property value
can be changed and has the following effects:
• If set to force on, embedded JavaScript

code in target HTML pages is executed.
• If set to force off, embedded JavaScript

code in target pages is not executed.
• If set to no change, it keeps the default

value (enabled) or the previously set value, if
another Browser property change statement
changed the value previously in the same
context.

In most cases, JavaScript property should be
enabled but for specific Web Clipping projects,
we recommend disabling JavaScript to prevent a
double JavaScript execution (one in the HTML
decoder and one in the user's browser).

Property Type Category Description
2 - 625

Chapter "Convertigo Objects"
Web
Plugin enable value PluginMode standard Forces the browser Plugin feature property on
(enabled) or off (disabled), or leaves it
unchanged.
By default, the Plugin feature property value
depends on the environment:
• in Studio, Plugin feature property is enabled

by default,
• in Server, the default value is based on a

property configured in Administration
Console Configuration page, in advanced
properties of HTML parser configuration tab.

Using this statement, Plugin feature property
value can be changed and has the following
effects:
• If set to force off, the plugins such as

Flash player are disabled, which speeds up
the process. It is used mostly for production
server mode, so another way to do the same
behavior is to always set this property to no
change with a default value configured to
false in the Administration Console.

• If set to force on, the plugins such as
Flash player are enabled, which slows down
a little the process.

• If set to no change, it keeps the default
value or the previously set value, if another
Browser property change statement changed
the value previously in the same context.

Remove cookies boolean standard Removes all cookies from the browser.
This property is not exactly a browser setting.
When this property is set to true, all cookies are
removed from the Convertigo context and HTML
decoder.

Window open enable
value

WindowOpenM
ode

standard Forces the browser Window open property on
(enabled with option to open "in new window" or
"in same window"), off (disabled) or leaves it
unchanged.
JavaScript window.open function is disabled by
default to prevent pop-up windows to be
displayed.
Using this statement, Window open property
value can be changes and has the following
effects.
If Window open property is set to force on,
pop-up windows are enabled. If enabled, two
cases are possible:
• set to Force on same window: pop-up

windows are opened replacing the parent
window in the HTML decoder (only one
browser window opened),

• set to Force on new window: pop-up
windows are opened as new tabs next to the
parent window in the HTML decoder (several
tabs opened in parallel in the same browser).
In this case, tabs opened can be accessed
and manipulated thanks to Tab management
statement.

If Window open property is set to force off,
pop-up windows are disabled.
If Window open property is set to no change, it
keeps the default value (disabled) or the
previously set value, if another Browser property
change statement changed the value previously
in the same context.

Property Type Category Description
2 - 626 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the searchGoogleWithLimit transaction set in the context of the "Starting

With Convertigo Web Integrator" Quick Guide. This transaction, which defines two variables

named keyword and maxPages, searches for the keyword in Google search engine and

accumulates the results of maxPages pages into an XML structure thanks to a Table extraction

rule.

In order to accelerate the execution of this transaction, we can define a Browser property

change statement disabling the images rendering. This statement is created with the following

parameters:

Browser property change [

image rendering enable value=force off

convertigo mode=both modes

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 352: Browser property change statement - Configuration example

The statement is created in the Functions folder of the transaction, under the transaction start

handler and appears as follows in the Projects view:
2 - 627

Chapter "Convertigo Objects"
Web
 Figure 2 - 353: Browser property change statement - Object in Projects view

When executing the test case defined for the transaction, the connector is reconnected to

Google website, with the images rendering disabled. It is visible in the Connector editor of the

Convertigo studio throughout the execution of the transaction:

 Figure 2 - 354: Browser property change statement - Connecting to Google website with images rendering disabled
2 - 628 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 355: Browser property change statement - Executing transaction and extracting data with images rendering
disabled
2 - 629

Chapter "Convertigo Objects"
Web
NAVIGATION BAR

OBJECT DESCRIPTION

Simulates a navigation bar action in the browser.

This statement allows Convertigo to navigate in the target web application using the usual

navigation bar tools of its internal browser. The action to perform is defined thanks to the

Action property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Action String standard Navigation bar action to perform in browser.
This property defines the navigation bar tool to
use. Following actions are available:
• backward: goes back to the last visited

page,
• forward: goes forward to the last visited

page,
• goTo: accesses the web page which URL is

defined in the JavaScript URL property,
• refresh: reloads the currently displayed

page,
• stop.
Note: The goTo action requires the JavaScript
URL property to be set.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.

JavaScript URL JS expression standard Defines the URL of the page to access when
goTo action is set in Action property.
This property is a JavaScript expression
evaluated during the transaction execution.
2 - 630 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Synchronizer TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

Property Type Category Description
2 - 631

Chapter "Convertigo Objects"
Web
TAB MANAGEMENT

OBJECT DESCRIPTION

Manages browser tabs.

Pop-ups opening in the internal browser can be opened as tabs (depending on the value of the

browser Window open setting). This statement allows to open, close, move, etc. browser tabs.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Action String standard Defines the action to be performed on browser
tabs.
Available actions are the following:
• close: closes the current tab,
• new: opens a new tab,
• getnbtab: retrieves the number of open tabs

in a JavaScript variable,
• getindex: retrieves the current tab index in a

JavaScript variable,
• next: set focus on the next tab,
• previous: set focus on the previous tab,
• setindex: places focus on the tab of specified

index.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.

JS index JS expression standard Defines the JavaScript expression resulting in the
index of the tab to be used.
This property has to be filled when the Action
property is set to an action that is concerned by a
tab index value.

Variable name String standard Defines the name of the variable in which data is
retrieved.
This property has to be filled when the Action
property is set to an action that is concerned by
retrieving a value in a JS variable (retrieving the
current tab index, "getindex" action, or number of
tab, "getnbtab" action).
2 - 632 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
COOKIES GET

OBJECT DESCRIPTION

Gets cookies from the Convertigo context.

This statement gets cookies from the Convertigo context and sets the value in a variable.

The value can be a string or an array of strings, depending on Separator property value.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider a transaction similar to GoToGoogleCom transaction set in the context of the

"Starting With Convertigo Web Clipper" Quick Guide, but defined in a Web Integrator project.

This transaction connects to Google website and, depending on the client country, navigates

to Google.com page. When finally arrived on Google.com page, the transaction retrieves the

cookies sent by the website and, for each cookie retrieved, displays a log line with its content.

To retrieve the cookies sent by Google website, a Cookies Get statement is created with the

following parameters:

Cookies Get [

separator=""

variable=googleCookie

]

These parameters are edited in the Properties view of the Convertigo Studio:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.

Separator String standard Defines the separator between cookies (empty
for an array).
This property allows to get a string concatenating
all cookies with a separator. When no character
is defined, the cookies are retrieved as an array
of strings.

Variable String standard Defines the variable in which the cookies will be
retrieved.
This variable can be a string or an array of
strings, depending on Separator property value.
2 - 633

Chapter "Convertigo Objects"
Web
 Figure 2 - 356: Cookies Get statement - Configuration example

The Separator property is set to an empty string, so the cookies are retrieved in the variable

as an array of strings.

The statement is created in the Functions folder of the transaction, under the corresponding

Screen class handler and appear as follows in the Projects view:
2 - 634 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 357: Cookies Get statement - Object in Projects view

When executing the GoToGoogleCom transaction, cookies are retrieved from the website and

the Convertigo engine log displays the following lines:
2 - 635

Chapter "Convertigo Objects"
Web
 Figure 2 - 358: Cookies Get statement - Log displaying retrieved cookies
2 - 636 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
COOKIES ADD

OBJECT DESCRIPTION

Adds cookie(s) in the Convertigo context.

This statement adds cookie(s) in the Convertigo context for them to be used between

Convertigo and the remote website.

Several cookies can be added, each cookie must match the following format:

"$Domain=<my.domain>;$Path=</the/path/

>;$Secure=true|false;$Date=<expiry date>;myName=myValue".

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression standard Defines the JavaScript expression evaluated to
give the cookie(s).
This expression generates a string value (one
cookie) or an array of string values (several
cookies).
Each cookie must match the following format:
"$Domain=<my.domain>;$Path=</the/
path/
>;$Secure=true|false;$Date=<expiry
date>;myName=myValue".

Is active boolean standard Defines whether the statement is active.
2 - 637

Chapter "Convertigo Objects"
Web
ADOPT CLIENT COOKIES

OBJECT DESCRIPTION

Adopts client cookie(s) in the Convertigo context.

This statement adds all client cookie(s) sent by the client browser in the Convertigo context for

them to be used between Convertigo and the remote website.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.
2 - 638 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
INJECT JS IN BROWSER

OBJECT DESCRIPTION

Injects JavaScript code under the node matching the specified XPath.

This statement enables Convertigo to inject any JavaScript code in the target web page. It can

then dynamically invoke any existing JavaScript code from the target page.

The Inject JS in browser statement dynamically creates a SCRIPT tag under the node

designated by the XPath property, containing the JavaScript code specified by the JS code

property, and executes it.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Delay if XPath not
found

long standard Defines the maximum delay the statement waits
if the XPath doesn't currently exists.
When no node in the page DOM matches the
XPath defined in XPath property, the statement
waits for it to match up to this delay, set in
milliseconds.
Convertigo tries to evaluate the specified XPath
while receiving a web page or executing
JavaScript in it. Once the XPath matches at least
one node of the page, the statement continues its
action.
Note: It is equivalent to defining a statement Wait
synchronization with an XPath synchronizer
before this statement, waiting for the same
XPath.

Is active boolean standard Defines whether the statement is active.

JS code String standard Defines the JavaScript code to inject and invoke.
Any JavaScript expression that will be valid for
the page currently accessed by the HTML
connector. This script is dynamically added as a
SCRIPT tag under the node specified by the
XPath property and evaluated.
For calling a JavaScript function already defined
in the page, do it using this syntax:
functionToBeCalled();. You can also
replace an existing JavaScript function by writing
another JavaScript function with a similar name.
This can be useful if a website features
JavaScript functions unsupported by
Convertigo's Mozilla/Firefox HTML parser.
You can also pass Convertigo variables to your
JavaScript code by using the Variables property.
2 - 639

Chapter "Convertigo Objects"
Web
Synchronization TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

Property Type Category Description
2 - 640 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Variables XMLVector standard Declares and initializes variables from Convertigo
in injected JavaScript code.
This property allows passing transaction's scope
variables to the JavaScript code injected in the
web page. These variables will be initialized with
a value resulting from a JavaScript expression
evaluated during the transaction execution (for
example using transaction variables).
These variables must be of standard types (for
example int, string, etc.), complex types are
not supported (for example Array or DOM).
For each variable, three columns have to be set:
• Variable: the variable name,
• Comment: a comment to illustrate this

variable,
• JS Expression: the JavaScript expression to

execute to give the variable value.
Note: A new variable can be added to the list
using the blue keyboard icon. The variables
defined in the list can be ordered using the arrow
up and arrow down buttons, or deleted using the
red cross icon.

XPath JS expression standard Defines the XPath expression of elements on
which the statement applies.
Depending on the statement, the execution of
this XPath on the web page DOM can result in a
single Node or a NodeList.

Property Type Category Description
2 - 641

Chapter "Convertigo Objects"
Web
GET URL

OBJECT DESCRIPTION

Extracts the current page URL into a variable in JavaScript scope.

The Get URL statement extracts the web page URL and sets a JavaScript variable with this

string.

Note: The JavaScript variable defined in scope thanks to this statement is a String.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the US directory website. Every page of this site contains a search form on its

top:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.

Variable name String standard Defines the name of the JavaScript variable.
If this variable exists in scope, its value is
overridden. If the variable doesn't exist in scope,
it is created.
2 - 642 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 359: Get URL statement - US directory website pages with search form

A searchBusiness transaction, which defines three variables named business,

cityZIPcode, and state, sets those three values into search form input fields and launch a

search by clicking on the Search button.

The transaction is able to fill the search form on the three pages of the US directory website

that are identified by screen classes in the project. The actions to perform on every screen are

defined thanks to a Function statement named setSearchInputs as follows:

 set Business input,

 set City / ZIP code input,

 select State in combobox,

 click on the Search button.

If the transaction starts on a page that is not recognized as belonging to a screen class defined

in the project, we want to test whether the web page URL belongs to US Directory website or

not. This would give the transaction the ability to display a custom error message depending

on the test result.

To retrieve the page URL, a Get URL statement is created with the following parameters:
2 - 643

Chapter "Convertigo Objects"
Web
Get URL [

variable name=pageUrl

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 360: Get URL statement - Configuration example

It is created in the Functions folder of the transaction, in the Default_screen_class entry

handler. In fact, this screen class will match any web page not belonging to project-defined

screen classes. This statement is created next to other statements used to implement the

transaction behavior described above and appears as follows in the Projects view:
2 - 644 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 361: Get URL statement - Object in Projects view

When diplaying Google search page in the web browser and then executing one of the test

cases defined for the transaction, the statements are executed so that an error message is

displayed in the transaction XML output.
2 - 645

Chapter "Convertigo Objects"
Web
GET ATTACHMENT

OBJECT DESCRIPTION

Downloads an attachment file.

This statement instructs Convertigo to wait for an attachment to be fully downloaded. This

statement requires the Convertigo internal browser to be set so as to receive attachments, by

using an appropriate Browser property change statement.

The required property must be changed prior to executing the action that triggers the download

(click on a download link for example). The property change can be included either in a

previous transaction or in a handler executed prior to the download.

Important note: Get attachment statement must be executed immediately after the action that

triggers the download.

Once the download is complete, the final destination for the retrieved document depends on

the Attachment recovery policy property value:

 If the property is set to localfile_<whatever_value>, the file is stored locally in a

temporary file, using the path defined by the File path property.

 If the property is set to base64, the file is stored in memory encoded in base 64.

Note: The file can be sent back to the client afterwards as binary data with the correct MIME

type: the client should request Convertigo .bin requester (see the "Interfaces to Convertigo"

chapter of the Reference Manual, "HTTP protocol interface to Convertigo" section, "Convertigo

URLs">"Convertigo requesters" paragraph).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attachment recovery
policy

Policy standard Defines how and where to recover the
attachment file.
This property can take one of the following
values:
• localfile_increment: stores the

downloaded file locally on the server, using
the File path property; if a file with the same
name has already been downloaded, it
increments the name of the file with a
number in order not to lose previous version,

• localfile_override: stores the
downloaded file locally on the server, using
the File path property; if a file with the same
name has already been downloaded, it
overrides the previously downloaded file with
the new version,

• base64: stores the downloaded file in
memory, encoded in base 64.

The localfile_override policy is the default
value for this property.
2 - 646 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the Convertigo website.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

File path JS expression standard JavaScript expression defining the file path,
including the file name, of the file to get
(optional).
If set, this property allows to override the initial
file name and to define the path to the directory
where the file must be get. This path is either
absolute or relative to Convertigo environment.
Relative paths starting with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
If not set, a default path is automatically
generated: .//downloads/
<original_name_from_the_server>. This
path automatically creates a downloads folder
in the project (if not existing) and stores in it the
file with its original name suggested by the
server.

Is active boolean standard Defines whether the statement is active.

Threshold long standard Defines the downloading activity threshold in
millisecond.
The HTML connector cannot know when a file
download is terminated. On the other side, the
HTML connector knows about downloading
activity.
This property allows to define a maximum time of
inactivity to wait after the last downloading
activity. If this threshold time is reached, the file
download is considered as finished.

Timeout long standard Defines the download timeout in millisecond.
This property allows to define the maximum time
to wait for the file to be downloaded. If the file
download is not finished at the end of this time,
the download is aborted.

Property Type Category Description
2 - 647

Chapter "Convertigo Objects"
Web
 Figure 2 - 362: Get attachment statement - Convertigo website

A downloadOperatingGuidePDFdocumentation transaction is developed to:

 connect to Convertigo website,

 navigate through the Developer Network pages,

 and download the Operating Guide documentation PDF file, storing it to the Convertigo

project.

The navigation through the website is performed thanks to several statements. While arrived

on the target Convertigo Documentation page, the transaction initiates the file download by

clicking on the appropriate link thanks to a Mouse action statement. This statement is

synchronized thanks to a Download Started synchronizer. For more information, see

Mouse action statement documentation and examples.

Then, to download the PDF file, a Get attachment statement is created with the following

parameters:

Get attachment [

attachment recovery policy:localfile_override

file path:

timeout=300000

threshold=1000
2 - 648 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 363: Get attachment statement - Configuration example

It is created in the Functions folder of the transaction, in the appropriate screen class entry

handler. This statement is created just after the Mouse action statement that initiates the

download, as described above, and appears as follows in the Projects view:
2 - 649

Chapter "Convertigo Objects"
Web
 Figure 2 - 364: Get attachment statement - Objects in Projects view

When starting the transaction, on the onTransactionStarted handler, a Browser property

change statement is added in order to change Convertigo internal Web browser’s

attachment download property. This property set in the Convertigo internal Web browser

is mandatory for any transaction that downloads an attachment thanks to the Get attachment

statement. For more information, see the Browser property change statement documentation

and examples.

Executing the transaction automatically downloads the PDF file in default downloads folder

at project’s root, as no File path property is set for this Get attachment statement. Switch to

the Project Explorer view, the downloads folder as well as the file are present.
2 - 650 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 365: Get attachment statement - Downloaded file in Project Explorer view
2 - 651

Chapter "Convertigo Objects"
Web
OTHERS
2 - 652 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
HTTP UPLOAD REQUEST

OBJECT DESCRIPTION

Sends an HTTP upload request.

This statement simulates an HTTP POST request on the target application with a content type

multipart/form-data to upload a file.

Note: You can add HTTP statement variable objects to this statement, they will be sent as

HTTP request parameters (for more information see HTTP single-valued variable and HTTP

multi-valued variable documentation).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

File path JS expression standard JavaScript expression defining the file path,
including the file name, of the file to upload.
This file must be a local file. This path is either
absolute or relative to Convertigo environment.
Relative paths starting with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.

HTTP Filename JS expression standard JavaScript expression defining the HTTP file
name of the file to upload.
If empty, the name of the local file is sent as
HTTP name.

HTTP headers XMLVector expert Defines the HTTP headers to be used in the
HTTP request.
This property allows the user to define specific
HTTP headers for the HTTP request.
Each header is defined with the following items:
• Variable: HTTP header name (ex:

Content-Type).
• Value: HTTP header value (ex:

application/x-www-from-
urlencoded).

Note: A new HTTP header can be added to the
list using the blue keyboard icon. The HTTP
headers defined in the list can be ordered using
the arrow up and arrow down buttons, or deleted
using the red cross icon.

Host String standard Defines the host address.
By default, HTTP request statements use the
Host property set in the connector object. This
property can be overridden by setting the Host
property here.
The Host property can contain a DNS host name
or be a simple IP address.

Is HTTPS boolean standard Defines whether the connection is secured
(HTTPS).
2 - 653

Chapter "Convertigo Objects"
Web
Is active boolean standard Defines whether the statement is active.

Port int standard Defines the server port.
By default, HTTP request statements use the
Port property set in the connector object. This
property can be overridden by setting the Port
property here.

Synchronization TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

URI JS expression standard Defines as a JavaScript expression the URI to be
used in the HTTP request.
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the URI string to be used in the HTTP
request.

Property Type Category Description
2 - 654 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
URL charset
encoding

String expert Defines the charset encoding to use for the
variable values sent as parameters in HTTP
request.
This property allows to define the charset
encoding used to URL-encode the parameter
values:
• GET parameters for the query string,
• POST parameters in case of application/

x-www-form-urlencoded content-type.
Default value is blank. If blank, the parent
transaction's URL charset encoding property
value is used.

Property Type Category Description
2 - 655

Chapter "Convertigo Objects"
Web
HTTP REQUEST

OBJECT DESCRIPTION

Sends an HTTP request.

This statement simulates an HTTP POST or GET request on the target application.

Note: You can add HTTP statement variable objects to this statement, they will be sent as

HTTP request parameters (for more information see HTTP single-valued variable and HTTP

multi-valued variable documentation).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

HTTP headers XMLVector expert Defines the HTTP headers to be used in the
HTTP request.
This property allows the user to define specific
HTTP headers for the HTTP request.
Each header is defined with the following items:
• Variable: HTTP header name (ex:

Content-Type).
• Value: HTTP header value (ex:

application/x-www-from-
urlencoded).

Note: A new HTTP header can be added to the
list using the blue keyboard icon. The HTTP
headers defined in the list can be ordered using
the arrow up and arrow down buttons, or deleted
using the red cross icon.

HTTP verb int standard Allows to choose the HTTP verb to use for this
HTTP request: GET, POST, PUT, DELETE, HEAD,
TRACE, OPTIONS or CONNECT.
For more information about HTTP verbs, you can
visit the following RFC page: http://www.w3.org/
Protocols/rfc2616/rfc2616-
sec9.html.property.https.display_name=Is
HTTPS

Host String standard Defines the host address.
By default, HTTP request statements use the
Host property set in the connector object. This
property can be overridden by setting the Host
property here.
The Host property can contain a DNS host name
or be a simple IP address.

Is HTTPS boolean standard Defines whether the connection is secured
(HTTPS).

Is active boolean standard Defines whether the statement is active.
2 - 656 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
Port int standard Defines the server port.
By default, HTTP request statements use the
Port property set in the connector object. This
property can be overridden by setting the Port
property here.

Synchronization TriggerXMLizer expert Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

URI JS expression standard Defines as a JavaScript expression the URI to be
used in the HTTP request.
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the URI string to be used in the HTTP
request.

Property Type Category Description
2 - 657

Chapter "Convertigo Objects"
Web
EXAMPLES

This example is based on a connector, reaching Google website, defined in a project named

sample_refManual_variables.

Let's consider an HTML transaction, named searchYahoo, similar to searchGoogle

transaction developed in the context of the "Starting with Convertigo Web Integrator" Quick

Guide, but performing the research on Yahoo website instead of Google.

It declares an HTTP single-value variable, named keyword, with a Default value property set

to "Convertigo". For more information about HTML transaction or HTTP single-valued

variable object, see "HTML transaction" and "HTTP single-valued variable" documentation and

example.

The searchYahoo transaction appears as follows in the Projects view of the Convertigo

Studio:

 Figure 2 - 366: HTTP request statement - HTML transaction with HTTP variable in Projects view

URL charset
encoding

String expert Defines the charset encoding to use for the
variable values sent as parameters in HTTP
request.
This property allows to define the charset
encoding used to URL-encode the parameter
values:
• GET parameters for the query string,
• POST parameters in case of application/

x-www-form-urlencoded content-type.
Default value is blank. If blank, the parent
transaction's URL charset encoding property
value is used.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Samples > Reference Manual examples >
Variables examples in the New Project wizard.

Property Type Category Description
2 - 658 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
The searchYahoo transaction is created with its Subpath property left empty, so it starts

executing its statements after the connector has established the connection to target website.

Being in a connector reaching Google website, the transaction has to redirect to Yahoo website

when Google search page is loaded. Then, it makes the research on the given keyword.

The Yahoo request URL for a research is:

http://fr.search.yahoo.com/search?p=<keyword>

where p is the keyword HTTP parameter.

To perform the redirection, an HTTP request statement is created on the Entry handler

matching Google search page, with the following parameters:

HTTP request [

isHTTPs=false

port=80

host=fr.search.yahoo.com

URI="/search"

synchronization=[document completed: 1, timeout= 60000 ms]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 367: HTTP request statement - Configuration example

The URI property is appearing between double-quotes because this property is a JavaScript

expression.

The Synchronization property indicates that, after triggering the action, the statement waits
2 - 659

Chapter "Convertigo Objects"
Web
for one document to be fully loaded before continuing the transaction execution. This property

is edited in the Trigger editor:

 Figure 2 - 368: HTTP request statement - Synchronization property edition

The statement is created in the Functions folder of the transaction, under the corresponding

Screen class handler and appears as follows in the Projects view:

 Figure 2 - 369: HTTP request statement - Object in Projects view

The HTTP request statement may declare variables, in order to send them as request

parameters. In this case, the statement declares an HTTP single-valued variable, named

keyword, in order to send the searched keyword as an HTTP request parameter to the Yahoo

research. For more information about the HTTP single-valued and multi-valued variables for

statements, see "HTTP single-valued variable" and "HTTP multi-valued variable"

documentation and examples.
2 - 660 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
The transaction is implemented and can be tested in the Studio. To do so, the first step is to

open the connector editor by double-clicking on the HTML connector in the Projects view (if

not already open). The internal browser connects to http://www.google.com/ as seen in

Design tab of the editor:

 Figure 2 - 370: HTTP request statement - Connector editor

Now execute the searchYahoo transaction by pressing F5 key on the transaction object in

the Projects view. The internal browser connects to http://fr.search.yahoo.com/

search?p=Convertigo as seen in Design tab of the editor:
2 - 661

Chapter "Convertigo Objects"
Web
 Figure 2 - 371: HTTP request statement - Connector editor after transaction execution

WHAT HAPPENED?

At the start of the transaction, its keyword variable was added to the JavaScript scope.

The connector built the request URL by concatenating the server address, the transaction

Subpath (empty) and an empty query string because the keyword variable hasn't specified

any parameter name through its HTTP name property. Thus, it simply requested http://

www.google.com/.

The Google search page screen class was detected thanks to its criteria and the

corresponding entry handler was executed.

The HTTP request statement built the request URL by concatenating its Host value, URI value

and a query string. This query string was formed from statement's variables details.
2 - 662 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXCEPTION

OBJECT DESCRIPTION

Raises a Convertigo Engine exception.

In some circumstances, it is necessary to explicitly raise a Convertigo Engine exception. This

is reflected as a SoapException for SOAP web service callers or by an XML error for any

other caller.

Expression property can be set to a complex JavaScript expression, mixing text strings and

data from variables. This expression will be evaluated during the transaction execution and will

build a dynamic message output in the raised exception.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the SalesForce website, famous CRM SaaS application. This website needs an

authentification thanks to a user / password:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression standard Defines the expression evaluated to give the
statement value.
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the statement's result.

Is active boolean standard Defines whether the statement is active.
2 - 663

Chapter "Convertigo Objects"
Web
 Figure 2 - 372: Exception statement - SalesForce website authentication page

A Login transaction, which defines two variables named username and password, is written

to authenticate the user on SalesForce website. This transaction:

 fills the User Name and Password fields using the user / password variables,

 submits the authentication form to access to SalesForce welcome page.

When the authentication is not correct, SalesForce website displays an error message,

recognized by Convertigo as the LoginFailedPage screen class.

When the username / password is not provided or the authentication is not correct, we want to

raise a Convertigo Engine Exception. To do so, two Exception statements are created in the

transaction, with the following parameters:

 on the transaction start handler, when username is not received or empty:

Exception [

expression: "Authentication impossible: username empty or null"

]

 on the LoginFailedPage screen class handler, when the authentication has failed:

Exception [

expression: "Authentication error: "+

errorMessage.item(0).getNodeValue()

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 664 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 373: Exception statement - Configuration example

 Figure 2 - 374: Exception statement - Configuration example

The Expression property is set to a simple text JavaScript expression for the first statement,

that will be evaluated unchanged during the transaction execution. For the other statement, the

Expression property is set to a more complex JavaScript expression, mixing a text string and

data from a variable, in order to build a dynamic message when evaluated during the

transaction execution.

The statements are created in the Functions folder of the transaction, under the

corresponding handlers and other statements, and appear as follows in the Projects view:
2 - 665

Chapter "Convertigo Objects"
Web
 Figure 2 - 375: Exception statement - Objects in Projects view

When executing the test cases named TestCase_Empty or TestCase_wrongLogin

defined for the Login transaction, the transaction raises an Engine Exception with the

appropriate message. They are visible in the Engine log:
2 - 666 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 376: Exception statement - Exception and message visible in Engine log

 Figure 2 - 377: Exception statement - Exception and message visible in Engine log
2 - 667

Chapter "Convertigo Objects"
Web
GET NODES

OBJECT DESCRIPTION

Extracts nodes from current HTML into a variable in JavaScript scope.

The Get nodes statement extracts a list of nodes from the web page DOM and sets a

JavaScript variable in the current executed transaction JavaScript scope. This variable

contains a Java NodeList object, i.e. a list of XML nodes, extracted from the HTML page

thanks to the execution of an XPath on the page DOM. This XPath is defined in XPath

property.

The variable is named after the Variable name property value. It exists while the transaction

is running.

If only one node matches, the variable is also a NodeList containing only one Node (index is

0). If no node matches, the variable is finally an empty NodeList, containing no Node

(var_name.getLength() = 0).

Notes:

 The variable contains a list of node elements of the DOM. To access one (Node) of the list,

use the following syntax in a statement: var_name.item(index).

 To access one element's text content (String), use the element.getTextContent()

method, to retrieve the text of the element, or the element.getNodeValue() method,

which result depends on the node type (will extract a text only if the Node is of Text or

Attribute type).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Delay if XPath not
found

long standard Defines the maximum delay the statement waits
if the XPath doesn't currently exists.
When no node in the page DOM matches the
XPath defined in XPath property, the statement
waits for it to match up to this delay, set in
milliseconds.
Convertigo tries to evaluate the specified XPath
while receiving a web page or executing
JavaScript in it. Once the XPath matches at least
one node of the page, the statement continues its
action.
Note: It is equivalent to defining a statement Wait
synchronization with an XPath synchronizer
before this statement, waiting for the same
XPath.

Is active boolean standard Defines whether the statement is active.
2 - 668 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

Example 1

Let’s consider a googleSearch transaction that implements a simple Google research on

Google website. It is created in a simpleGoogleConnector connector, containing only two

screen classes (googleSearchForm and googleResults).

The googleSearch transaction, defining a variable named keyword, has for purpose to input

this keyword into the search input field in the googleSearchForm screen class and validate

the research by clicking on the Google Search button. Then, it extracts the results in a table

XML structure from googleResults screen class, and:

 if present, clicks on the Next link to pass to the next page and accumulate the data,

 if not present, stops.

In order to test the presence of the Next link on the googleResults screen class before

clicking on it, a Get nodes statement is created with the following parameters:

Get nodes [

variable name=nextButtonNodeList

xpath='//A[@id="pnnext"]'

]

These parameters are edited in the Properties view of the Convertigo Studio:

Variable name String standard Defines the name of the JavaScript variable.
If this variable exists in scope, its value is
overridden. If the variable doesn't exist in scope,
it is created.

XPath JS expression standard Defines the XPath expression of elements on
which the statement applies.
Depending on the statement, the execution of
this XPath on the web page DOM can result in a
single Node or a NodeList.

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > HTML connector statements
examples in the New Project wizard.

Property Type Category Description
2 - 669

Chapter "Convertigo Objects"
Web
 Figure 2 - 378: Get nodes statement - Configuration example

The Xpath property is set to a simple String expression matching an A link node with an id

attribute that is "pnnext". The Variable name property is set to nextButtonNodeList for

the programmer to keep in mind that the generated variable is a Java NodeList.

The statement is created in the Functions folder of the transaction, under the corresponding

Screen class handler, with various other statements used to implement the transaction

behavior described above. It appears as follows in the Projects view:
2 - 670 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 379: Get nodes statement - Object in Projects view

On each screen class detection, after the variable is set in current JavaScript scope by the

execution of this statement, the next statement tests if the variable contains a node or not in

order to:

 click on the link and continue by accumulating data,

 or stop the transaction, as previously explained.

This If statement uses the following syntax to test the length of the extracted NodeList object:

nextButtonNodeList.getLength() > 0. When the length is superior to 0, it contains at

least one Node: the transaction can continue.

The variable defined for the transaction contains a default value "convertigo cliplet" that

gives only a few pages of results on Google. When executing the transaction, it searches for
2 - 671

Chapter "Convertigo Objects"
Web
the keyword, accumulates the 2 or 3 pages of results and stops.

Example 2

Let’s consider a fillForm transaction, which defines one multivaluated variable named

inputs. This transaction sets input field values into a web page containing a FORM HTML

element. It is created in a googleFormConnector connector, containing only one screen

class (Form_Screen_class).

As the transaction doesn’t know in advance the number of inputs to fill in the FORM, it is

implemented to loop on each element of the inputs variable, dynamically received from the

caller, and to set each value in the nth HTML INPUT element of the web page. When there is

no more INPUT element to fill, the transaction exits the loop and ends.

For each iteration of the loop, the transaction has to check if an nth INPUT element exists in

the page. To do so, a Get nodes statement is created to try getting the nth INPUT element in

a JavaScript variable. This statement is created with the following parameters:

Get nodes [

variable name=inputNodeList

xpath='//INPUT[not(@type) or (@type!="submit" and @type!="hidden")]

[' + iterator+1 + ']'

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 380: Get nodes statement - Configuration example

The Xpath property is set to a complex Javascript expression, mixing strings and variables in

order to build an Xpath of the following form when evaluated for each iteration of the loop:

You can find the complete example project in the Studio. To open this
project, refer to the procedure “Opening a sample project from the
Studio”, choosing to open Convertigo Samples and Demos >
Reference Manual examples > HTML connector statements
examples in the New Project wizard.
2 - 672 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
//INPUT[not(@type) or (@type!="submit" and @type!="hidden")][1]

This xpath will allow the statement to extract on each iteration a NodeList containing one

node, or none when no nth INPUT exists.

The statement is created in the Functions folder of the transaction, under the corresponding

Screen class handler and various other statements used to implement the transaction behavior

described above. It appears as follows in the Projects view:

 Figure 2 - 381: Get nodes statement - Object in Projects view

On each iteration, after the variable is created by the execution of this statement, the

transaction tests if the variable contains a node or not in order to continue or stop, as previously

explained.

This If statements use the following syntaxes to test if the extracted NodeList contains a

Node or not :

 inputNodeList.item(0) != null: there is a Node in the NodeList,

 inputNodeList.item(0) == null: the NodeList is empty.
2 - 673

Chapter "Convertigo Objects"
Web
The Test Case defined for the transaction contains three values in inputs variable. When

executing it on Google search page, containing a FORM element with only one INPUT to fill, the

transaction sets the first value of inputs variable into the INPUT element of the web page and

exists the loop as no second INPUT element is found for the next value.
2 - 674 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
GET TEXT

OBJECT DESCRIPTION

Extracts a string from current HTML into a variable in JavaScript scope.

The Get text statement gets a single node from the web page DOM and sets a JavaScript

variable in the current executed transaction JavaScript scope. This variable contains a

String, extracted from the HTML page thanks to the execution of an XPath on the page DOM.

This XPath is defined in XPath property.

The variable is named after the Variable name property value. It exists while the transaction

is running.

If no node matches, the variable is null.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Delay if XPath not
found

long standard Defines the maximum delay the statement waits
if the XPath doesn't currently exists.
When no node in the page DOM matches the
XPath defined in XPath property, the statement
waits for it to match up to this delay, set in
milliseconds.
Convertigo tries to evaluate the specified XPath
while receiving a web page or executing
JavaScript in it. Once the XPath matches at least
one node of the page, the statement continues its
action.
Note: It is equivalent to defining a statement Wait
synchronization with an XPath synchronizer
before this statement, waiting for the same
XPath.

Is active boolean standard Defines whether the statement is active.

Variable name String standard Defines the name of the JavaScript variable.
If this variable exists in scope, its value is
overridden. If the variable doesn't exist in scope,
it is created.

XPath JS expression standard Defines the XPath expression of elements on
which the statement applies.
Depending on the statement, the execution of
this XPath on the web page DOM can result in a
single Node or a NodeList.
2 - 675

Chapter "Convertigo Objects"
Web
CONTEXT GET

OBJECT DESCRIPTION

Gets the object bound with the specified key in the context.

This statement gets an object from the context identified by a key and sets it in a JavaScript

variable.

This object was previously set in the context, bound with its key, thanks to Context Set

statement.

If no object is bound with this key in the context, the JavaScript variable is set to null.

Note: The action is similar to a Simple statement with the following line of code:

myVar = context.get("key").

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the SalesForce website, famous CRM SaaS application. This website needs an

authentification thanks to a user / password:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.

Key String standard Defines the key identifying the object to retrieve.
Key property is similar to the parameter of
context.get JavaScript method.

Variable String standard Defines the JavaScript variable into which the
object will be retrieved.
Variable property is similar to the name of the
result variable of context.get JavaScript
method.
2 - 676 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 382: Context Get statement - SalesForce website authentication page

In the context of a mashup application including a SalesForce widget, we want the user to be

able to customize its user / password. A PreferencesRegistration transaction, which

defines two variables named username and password, allows to register in Convertigo

context the user authentication values.

A LoginFromPreferences transaction, which does not define any variable, is written to

authenticate the user on SalesForce website using the previously saved username and

password. This transaction:

 retrieves user / password from the context,

 fills the User Name and Password fields using these values,

 submits the authentication form to access to SalesForce welcome page.

To do so, a Context Get statement is created in the transaction start Handler for each data to

be retrieved from the context. For the username, the statement is created with the following

parameters:

Context Get [

key="user"

variable=username

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 677

Chapter "Convertigo Objects"
Web
 Figure 2 - 383: Context Get statement - Configuration example for username

For the password, the statement is created with the following parameters:

Context Get [

key="pass"

variable=password

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 384: Context Get statement - Configuration example for password

The statements are created in the Functions folder of the transaction, under the transaction

start Handler and appear as follows in the Projects view:
2 - 678 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 385: Context Get statement - Objects in Projects view

When executing the test case defined for the PreferencesRegistration transaction, user

authentication values are saved in the context. Then the LoginFromPreferences

transaction can be executed: it authenticates and connects to SalesForce website.
2 - 679

Chapter "Convertigo Objects"
Web
CONTEXT SET

OBJECT DESCRIPTION

Stores an object identified by a key in the context.

Context Set statement stores an object in the context identified by a key.

This object can be retrieved later identified by its key thanks to Context Get statement.

Note: The action is similar to a Simple statement with the following line of code:

context.set("key", object).

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the SalesForce website, famous CRM SaaS application. This website needs an

authentification thanks to a user / password:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression standard Defines the expression evaluated to give the
object to set.
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the object to set.
Expression property is similar to the second
parameter of context.set JavaScript method.

Is active boolean standard Defines whether the statement is active.

Key String standard Defines the key to identify the object to be set.
Key property is similar to the first parameter of
context.set JavaScript method.
2 - 680 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 386: Context Set statement - SalesForce website authentication page

In the context of a mashup application including a SalesForce widget, we want the user to be

able to customize its user / password. A PreferencesRegistration transaction, which

defines two variables named username and password, is written in order to register in

Convertigo context the user authentication values.

To do so, a Context Set statement is created in the transaction start Handler for each variable

to save in the context. For the username variable, the statement is created with the following

parameters:

Context Set [

key="user"

expression=username

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 681

Chapter "Convertigo Objects"
Web
 Figure 2 - 387: Context Set statement - Configuration example for username

For the password variable, the statement is created with the following parameters:

Context Set [

key="pass"

expression=password

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 388: Context Set statement - Configuration example for password

The statements are created in the Functions folder of the transaction, under the transaction

start Handler and appear as follows in the Projects view:
2 - 682 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 389: Context Set statement - Objects in Projects view

A LoginFromPreferences transaction, which does not define any variable, is written to

authenticate the user on SalesForce website using the previously saved username and

password. This transaction:

 retrieves user / password from the context,

 fills the User Name and Password fields using these values,

 submits the authentication form to access to SalesForce welcome page.

When executing the test case defined for the PreferencesRegistration transaction, user

authentication values are saved in the context. Then the LoginFromPreferences

transaction can be executed: it authenticates and connects to SalesForce website.
2 - 683

Chapter "Convertigo Objects"
Web
CONTEXT ADD TEXT NODE

OBJECT DESCRIPTION

Adds a text node to transaction XML output.

This statement adds a node under the document root of the transaction XML output, containing

a text.

Note: The action is similar to that of a Simple statement with:

context.addTextNodeUnderRoot(expression).

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider a fillForm transaction, which defines one multivaluated variable named

inputs. This transaction sets input field values into a web page containing a FORM HTML

element.

As the transaction doesn’t know in advance the number of inputs to fill in the FORM, it is

implemented to loop on each element of the inputs variable, dynamically received from the

caller, and to set each value in the nth HTML INPUT element of the web page. When there is

no more INPUT element to fill, the transaction exits the loop and ends.

For each INPUT filled, we can add a text node in the transaction output XML to know at the

end of the execution which values have been filled into INPUT elements. To do so, a Context

Add text node statement is created in case the nth INPUT element is filled with the nth value

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression standard Defines the expression evaluated to give the text
to output.
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the text string to output in the generated
element.

Is active boolean standard Defines whether the statement is active.

Tag name String standard Defines the tag name of the generated XML
element.
This property can contain any name, no words
are reserved, and must follow the rules on XML
naming:
• it can contain letters, numbers, and other

characters,
• it cannot start with a number,
• it cannot contain spaces nor punctuation

character.
2 - 684 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
of the inputs variable. This statement is created with the following parameters:

Context Add text node statement [

tag name="input"

expression: "inputs["+iterator+"]='"+inputs[iterator]+"'"

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 390: Context Add text node statement - Configuration example

The Expression property is set to a complex JavaScript expression, mixing strings and

variables in order to build a string of the following form when evaluated:

inputs[2]='mashup'

The statement is created in the Functions folder of the transaction, under the corresponding

Screen class handler and various other statements used to implement the transaction behavior

described above. It appears as follows in the Projects view:
2 - 685

Chapter "Convertigo Objects"
Web
 Figure 2 - 391: Context Add text node statement - Object in Projects view

The test case defined for the transaction contains three values in inputs variable. When

executing it on Google search page, containing a FORM element with only one INPUT to fill, the

transaction sets the first value of inputs variable into the INPUT element of the web page and

exists the loop as no INPUT element is found for the next value.

After execution, the transaction XML output contains the one text node that has been added

thanks to the statement:

 Figure 2 - 392: Context Add text node statement - Resulting XML after executing fillForm transaction on Google
search page
2 - 686 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
LOG (WEB)

OBJECT DESCRIPTION

Produces output data in log file.

This statement outputs a message in context or engine logger (defined thanks to the Engine

property), for the log level defined in the Level property.

The message to output is generated from the JavaScript expression defined in Expression

property.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider a transaction similar to GoToGoogleCom transaction set in the context of the

"Starting With Convertigo Web Clipper" Quick Guide, but defined in a Web Integrator project.

This transaction connects to Google website and, depending on the client country, navigates

to Google.com page. When finally arrived on Google.com page, the transaction retrieves the

cookies sent by the website and, for each cookie retrieved, displays a log line with its content.

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Engine boolean standard Defines if the log is to be output in Engine logger
or default Context logger.
This property allows to choose the logger on
which the log applies.
If set to true, the message will be seen as
output by the Convertigo Engine. If set to false
(default value), the message will be seen as
output by the running Context.

Expression JS expression standard Defines the expression evaluated to give the text
to output.
This property is a JavaScript expression that is
evaluated during the transaction execution and
gives the text string to output in log file.

Is active boolean standard Defines whether the statement is active.

Level String standard Defines the log level on which the log applies.
This property defines the minimum level of log for
which the message has to be output. The
message will be output for any log level superior
or equals to this property value.
Log levels possible values are the following, by
ascending order:
• ERROR,
• WARN,
• INFO,
• DEBUG,
• TRACE.
2 - 687

Chapter "Convertigo Objects"
Web
To output cookies value in log, a Log statement is created with the following parameters:

Log [

expression: "### Google cookie ["+i+"]: "+googleCookies[i]+" ###"

engine=false

level=INFO

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 393: Log statement - Configuration example

The Expression property is set to a complex Javascript expression, mixing text strings and

data from the variable in which the cookies have been retrieved, in order to build a dynamic

message when evaluated during the transaction execution.

The statement is created in the Functions folder of the transaction, under the corresponding

Screen class handler and appear as follows in the Projects view:
2 - 688 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 394: Log statement - Object in Projects view

When executing the GoToGoogleCom transaction, cookies are retrieved from the website and

the Convertigo engine log displays the following lines:

 Figure 2 - 395: Log statement - Log displaying retrieved cookies
2 - 689

Chapter "Convertigo Objects"
Web
2 - 690 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
WAIT SYNCHRONIZATION

OBJECT DESCRIPTION

Checks the defined synchronization and waits for it.

A synchronization is defined thanks to the Synchronization property. This statement does no

action but waits for the synchronizer to return.

There are four types of synchronizers, see their definitions in Synchronization property

description.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.
2 - 691

Chapter "Convertigo Objects"
Web
Synchronization TriggerXMLizer standard Defines how to synchronize the statement.
A synchronizer states how and when accessed
pages are considered fully loaded. Only then are
data extracted and new pages re-detected.
There are several types of synchronizers, that
are described hereafter:
• Document completed: The synchronizer

waits for a number of documents to be
completed. Specify here how many
"document completed" events Convertigo
has to wait for before assuming that the page
is complete. In many cases, when the target
application uses HTTP META redirects or
JavaScript redirects, the document is loaded
several times. You can monitor

==== start parse ======
and
==== Parse end ==(XXXms
)====================
traces in the Engine console (debug mode) to
count the number of "document completed"
events needed for the synchronizer. The
Document completed synchronizer can be
configured to also stop on alert messages that
could pop up. Alert messages do not trigger a
"document completed" event and are not
detected by this synchronizer. To activate this
option, check the Stop on alert checkbox.
• XPath: The synchronizer waits until a

specified XPath is found. Convertigo tries to
evaluate the specified XPath while receiving
a web page or executing JavaScript in it.
Once the XPath matches at least one node of
the page, the synchronizer returns.

• Wait time: The synchronizer waits until a
specified time is reached (in ms, set via the
Timeout property).

• Screen Class: The synchronizer waits for
one of the selected screen classes to be
detected. Several screen classes can be
selected to be waited for. The synchronizer
returns when one of them is reached.

• Download started: The synchronizer
waits for a download request. This is the
perfect synchronizer to use before a Get
attachment statement.

• No wait: The synchronizer doesn't wait and
execution proceeds directly.

For all synchronizer types, the maximum waiting
time is set using the Timeout property.

Property Type Category Description
2 - 692 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
CONTINUE WITH SITE CLIPPER

OBJECT DESCRIPTION

Redirects to a Site Clipper connector.

Continue with Site Clipper statement ends an HTML transaction by redirecting the context to

a Site Clipper connector. It is set at the end of an handler to end the HTML transaction, which

results in that no other handler nor statement from the transaction is executed after it.

This statement specifies a redirection URL to its parent connector in the transaction's XML

output. This rewritten URL is an absolute URL pointing to the current Convertigo project, with

a particular syntax:

 it starts with the usual project's path,

 it then specifies the Convertigo context and the Site Clipper connector to use,

 it ends with the .siteclipper extension,

 after the extension, the target resource URL is concatenated, replacing the '://' symbols

after the target resource protocol, (http:// for example, by a '/' character.

This gives the following URL form:

http://<convertigo_server_host>:<convertigo_server_port>/convertigo/

projects/<project_name>/

context=<context_name>&connector=<connector_name>.siteclipper/

<target_resource_protocol>/<target_resource_host>/

<target_resource_URI>

The Site Clipper connector accessed thanks to this URL then relays all HTTP messages

between the client and the target server. For more information about Site Clipper, see Site

Clipper connector and related objects documentation.

Note: The Site Clipper connector to which redirect is in the same project. Thus, the HTML

transaction and the Site Clipper connector can share the same context.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.
2 - 693

Chapter "Convertigo Objects"
Web
EXAMPLES

Let’s consider the Convertigo administration website. This website needs an authentication

with a user / password:

 Figure 2 - 396: Continue with Site Clipper statement - Login page of Convertigo administration website

In the context of this website clipping, we want the login phase to be automated and then the

user to be able to get the browsing control back on the administration website through

Convertigo.

An HTML transaction, named LoginAdmin, is created to automate the access to the

Configuration page of Convertigo administration website. Defining two variables named

username and password, this transaction:

 connects to Convertigo administration website,

 enter the username and password in the corresponding fields,

 validates the authentication by clicking on the "Sign in" button,

 clicks on the "Configuration" menu button to access Configuration page.

After the transaction accesses the Configuration page of Convertigo administration website,

we want the user to get back the control of the browsing, through Convertigo.

To do so, a Continue with Site Clipper statement is created at the end of the transaction for

Convertigo to switch to the Site Clipper connector that is defined in the same project. This

Site Clipper
connector

String standard Define the Site Clipper connector to which
redirect.
The target connector can be chosen among the
connectors from the same project as the
Continue with Site Clipper statement. Indeed, the
HTML transaction including the Continue with
Site Clipper statement and the Site Clipper
connector must share the same context.

Property Type Category Description
2 - 694 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
statement is set with the following parameters:

Continue with Site Clipper [

site clipper connector=ConvertigoAdminConnector

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 397: Continue with Site Clipper statement - Configuration example

The statement is created in the Functions folder of the transaction, under the corresponding

Screen class handler, next to other statements that implement the transaction behavior

described above. It appears as follows in the Projects view:
2 - 695

Chapter "Convertigo Objects"
Web
 Figure 2 - 398: Continue with Site Clipper statement - Object in Projects view

When executing the test case defined for the LoginAdmin transaction in the test platform,

authentication values are automatically set by Convertigo in corresponding fields and the

transaction accesses Configuration page of Convertigo administration website. Then, the

transaction automatically continues on the Site Clipper connector. The user accesses the

Configuration page of Convertigo administration and can navigate on the website through

Convertigo:
2 - 696 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 399: Continue with Site Clipper statement - Return of transaction execution
2 - 697

Chapter "Convertigo Objects"
Web
RECORDER FOR SITE CLIPPER

OBJECT DESCRIPTION

Starts recording HTML connector HTTP responses to reuse them with Continue with Site

Clipper statement.

Recorder for Site Clipper statement enables the recording of all HTTP responses that match

the URL RegEx filter made by the HTML connector and disable cache for those responses.

The recording stop when a Continue with Site Clipper is executed or if a stateless HTML

transaction starts. Those recorded HTTP responses are reuse when the Site Clipper connector

response the same resources and prevent to ask the resources again to the remote website.

This can be important on some page where a browser refresh doesn't provide the same

content, like a POST form result or query that modify server side data (such a shopping cart).

Record response consume memory, so use it with caution and try to set a URL RegEx filter if

possible. A recorded response is destroyed after the Site Clipper connector use it or when its

response lifetime (sec) is expired.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean standard Defines whether the statement is active.

Response lifetime int standard Define the time-to-live (in seconds) of recorded
responses.
Recorded responses are kept in memory a
maximum of time corresponding to the
Response lifetime property value.
If a recorded response is not used by a Site
Clipper connector during its lifetime, it is
automatically destroyed when its time-to-live
expires.

URL regexp filter String standard Defines a regular expression for response URL
filtering.
All HTTP responses should not be recorded by
this statement. The URL regexp filter property
allows defining a regular expression as a string
pattern to find in the URL of HTTP responses.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.
2 - 698 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
EXAMPLES

Let's consider the website "www.loancalculator.ws" that proposes to calculate the amount of

each period and interest payment of loans. It uses an HTML form where loan data are entered:

 Figure 2 - 400: Recorder for Site Clipper statement - Form page of LoanCalculator website

When validated, this form submits its fields as POST data to the response page, which URL is

"http://www.loancalculator.ws/free/", and displays a result page of the following

form:
2 - 699

Chapter "Convertigo Objects"
Web
 Figure 2 - 401: Recorder for Site Clipper statement - Result page of LoanCalculator website

An HTML transaction, named LoanSimulation, is developed to perform a loan simulation

with data retreived from its variables. It fills all fields with input data and submits the form.

When the result page is displayed, the transaction's purpose is to give the control back to the

user through a Site Clipper connector for the user to see the results of its loan calculation.

To do so, the transaction uses a Continue with Site Clipper statement on the results screen

class. For more information about this statement, see "Continue with Site Clipper" statement

documentation and examples.

Switch to a browser displaying the test platform for this project. The transaction declares

default values for its variables, so it can be executed directly.

Executing the LoanSimulation transaction (in a new tab thanks to the Execute Full Screen

button) sets correctly all data in the form and submits it.

Then, when the result page is displayed, the context is passed to the Site Clipper connector

and the user gets the control back on the website accessed through Convertigo.
2 - 700 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 402: Recorder for Site Clipper statement - Result page through Site Clipper after the transaction execution

We can see that the result page the user gets back doesn't display the same data as the web

browser included in the HTML connector editor of Convertigo Studio.
2 - 701

Chapter "Convertigo Objects"
Web
 Figure 2 - 403: Recorder for Site Clipper statement - Result page in connector editor after transaction execution

Actually, the Convertigo Studio web browser displays the results corresponding to data

entered in the form by the HTML transaction (values from transaction input variables).

When passing the context to the Site Clipper connector, the request asks for "http://

www.loancalculator.ws/free/" URL, which is the URL of the result page, but without

sending again the POST data sent by the form.

In other words, when passed to the Site Clipper connector, the result page is refreshed and

displays the website's default results.

In order to prevent this behavior, the HTML transaction can use a a Recorder for Site Clipper

statement before submitting the form. This statement is set with the following parameters:

Recorder for Site Clipper [

URL regexp filter=.*

response lifetime=120

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 702 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 404: Recorder for Site Clipper statement - Configuration example

The statement is created in the Functions folder of the transaction, in the form page screen

class handler, before the Mouse action statement that performs the click validating the form. It

appears as follows in the Projects view:
2 - 703

Chapter "Convertigo Objects"
Web
 Figure 2 - 405: Recorder for Site Clipper statement - Object in Projects view

Switching back to the browser displaying the test platform for this project. Executing again the

LoanSimulation transaction (in a new tab thanks to the Execute Full Screen button) sets

correctly all data in the form, starts recording for Site Clipper and submits the form. Then, when

the result page is displayed, the context is passed to the Site Clipper connector and the user

gets the control back on the correct result page from the website accessed through Convertigo:
2 - 704 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Web
 Figure 2 - 406: Recorder for Site Clipper statement - Return of transaction execution

WHAT HAPPENEND?

Convertigo recorded the HTTP response received by the HTML connector when submitting the

form, as the Recorder for Site Clipper statement was set before the click that submits the form.

Then, when the Site Clipper connector asked for the result page URL, Convertigo retrieved the

HTTP response recorded from HTML connector and the Site Clipper connector got the same

result as the HTML connector.
2 - 705

Chapter "Convertigo Objects"
Legacy
2.9 Legacy
2 - 706 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
2.9.1 Main objects
2 - 707

Chapter "Convertigo Objects"
Legacy
JAVELIN CONNECTOR

OBJECT DESCRIPTION

Establishes connections with a legacy screen application (IBM 3270, IBM 5250, Bull DKU

7107 or Videotex).

A Javelin connector, also named Legacy connector, represents a connection to a legacy

system, based on a terminal emulation session. It allows Convertigo to connect to a mainframe

application to perform transactions, that is to say navigate through legacy screens and either:

 extract data into a proper XML document (CLI),

 on-the-fly webize legacy screens (CLP).

Javelin connector is needed by Convertigo to connect to legacy applications. Once connected,

all tasks (screen classes detection, data extraction, browsing, etc.) associated with the Javelin

connector can be carried out as defined in the project thanks to several objects:

 Screen classes,

 Criteria,

 Extraction rules,

 Javelin transactions,

 Screen classes handlers.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Billing Java class String expert Defines the Java class name executed for billing
pruposes.
Convertigo supports a plugin architecture offering
billing functionalities. Set the name of the billing
class to be called by Convertigo for billing
purposes.

Carioca
authentication

boolean expert Defines whether the connector requires a
Carioca authentication.
Set to true if you require that only Carioca-
authenticated users be able to use this
connector.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 708 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Connection address String standard Defines the connection address.
The connection address of a Javelin connector is
composed of:
• a destination address, as a hostname (or IP

adress) and optionally a port,
• a connection type: most often DIR for direct

connection, it can also take EIC or TCP as
value,

• a connection parameter, optional.
The connection parameter has different
meanings according to the emulator:
• 3270: TN3270 device name,
• 5250: TN5250 device name,
• DKU: MAILBOX,
• Minitel: service code (e.g. '3615SNCF').
It can be defined using an automatic numbering
syntax managed by Convertigo engine:
PREFIX<POOL:x-y/z>SUFFIX.
This syntax will automatically generate a pool of
"auto-numbered connection parameters", the
Javelin connector will use one of them when a
new connection starts.
This syntax is composed of the following
elements:
• PREFIX: any prefix string to start the device

name or service code,
• <POOL:x-y/z>: incremental number from x

to y on z digits (for example <POOL:1-99/
2> meaning an incremental number from 1 to
99 on 2 digits, i.e. from 01 to 99),

• SUFFIX: any suffix string to end the device
name or service code.

Notes:
• When a connection using an "auto-numbered

connection parameter" is closed, the
parameter is released in the pool and can be
used again.

• This pool of "auto-numbered connection
parameters" works like a round robin: when
released, an "auto-numbered connection
parameter" is queued at the end of the pool.
It will be re-used only when all others have
been used before.

• The pool of "auto-numbered connection
parameters" will not work in Convertigo
Studio context, only works in Convertigo
server.

Connection
synchronization code

String expert Defines the code to execute for synchronization
purposes after connecting the emulator to the
host.
This property allows the developer to program a
code to be executed to synchronize the emulator
after its connection, before executing any
transaction. It uses JavaScript code as Javelin
transaction core.

Emulator String standard Defines the emulator associated with the
connector.
This property takes one of the following values:
• Bull DKU 7107,
• IBM 3270,
• IBM 5250 (AS/400),
• Videotex (Minitel),
• Unix (VT220).

Property Type Category Description
2 - 709

Chapter "Convertigo Objects"
Legacy
EXAMPLES

The following is an example of Javelin connector set for connecting to a local IBM 5250 legacy

application:

Javelin connector [

connection address=[connection parameter="", host name="localhost",

port=23, connection type=DIR]

emulator=IBM 5250 (AS/400)

connection synchronization code="javelin.waitForDataStable

(timeout, threshold);"

carioca authentication=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

Enable SSL boolean expert Defines whether a SSL connection should be
used.

End transaction String expert Defines the transaction to execute before
removing the context.
When a Convertigo context is removed, the
specified "End transaction" is executed. Place in
this transaction any clean up code, for example a
Logout transaction.

IBM terminal type String expert Defines the IBM terminal type.
This property allows to override the value of the
TerminalType configuration property.
Depending on the Emulator property value, this
overridden configuration property is present in
different files, and this IBM terminal type
property can take different values.
For IBM 3270 emulator:
• the TerminalType configuration property is

defined in "TerminalSNA.txt" configuration
file,

• its default value is positioned to "IBM-3278",
• it can be overridden by IBM terminal type

property to IBM-3278 (corresponding to old
3270),

• or it can be overridden by IBM terminal type
property to IBM-3279 (default value for
3270).

For IBM 5250 emulator:
• the TerminalType configuration property is

defined in "TerminalAS400.txt" configuration
file,

• its default value is positioned to "IBM-5250",
• it can be overridden by IBM terminal type

property to IBM-3179 (default value for
5250).

Language int expert Defines the language used within the emulator.
This property value has to be chosen amongst a
list of available values.

Trust all SSL server
certificates

boolean expert Defines if all server certificates should be
automatically trusted for SSL connections.

Virtual server String expert Defines the name of the virtual server to use (if
left empty, the primary virtual server is used).

Property Type Category Description
2 - 710 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 407: Javelin connector - Configuration example

Connection address property is edited in the associated editor:
2 - 711

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 408: Javelin connector - Connection address property edition

In the Convertigo Studio, the Javelin connector editor displaying the emulator connected to

the legacy application and the generated XML is displayed as follows:

 Figure 2 - 409: Javelin connector - Connector editor in Studio
2 - 712 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
JAVELIN TRANSACTION

OBJECT DESCRIPTION

Not yet documented.

For more information, do not hesitate to contact us in the forum in our Developer Network

website: http://www.convertigo.com/itcenter.html
2 - 713

Chapter "Convertigo Objects"
Legacy
JAVELIN SCREEN CLASS

OBJECT DESCRIPTION

Defines a group of screens with common features, in a Legacy connector.

By the term "screen" is meant a set of identifiable data which may be rendered to the user or

not. It is generally used regardless of the resource accessed by Convertigo (web page, Legacy

screen, HTTP stream, etc.).

Thus, in the case of Legacy connector (also called Javelin connector) projects (Legacy

Integrator and Legacy Publisher), a screen may be defined by the data sent back by a Legacy

host, for a green screen display.

A Javelin screen class is identified by a set of criteria which are dedicated to screen's data

detection. When accessing a screen (i.e. a legacy screen) thanks to a Javelin connector,

Convertigo looks for detection criteria defined for screen classes in current connector.

Convertigo considers that the accessed screen belongs to the Javelin screen class which all

criteria match and which have the greatest number of criteria matching. For screen classes that

would have the same number of matching criteria, Convertigo considers that the screen

belongs to the screen class that has the greatest depth. And if screen classes also have the

same depth, Convertigo considers that the screen belongs to the first screen class in

alphabetical order.

For Legacy Integrator and Legacy Publisher projects (screens in a Javelin connector),

detection criteria are Empty screen, Emulator technology, Find string and Regular expression.

You can see these objects definitions and properties for more information.

A Javelin screen class can also be associated with extraction rules executed on its detection

by Convertigo. Extraction rules define which data are to be extracted from a screen and turned

into a proper XML document.

Javelin screen classes are pivotal in the execution of transactions, since their detection triggers

the execution of screen class handlers (including actions to be performed on detected screens)

and extraction rules (extracting data to be turned into XML).

Note: A Javelin screen class do not define one screen only, but all screens matching the

specified criteria. It is up to the Convertigo programmer to set detection criteria.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 714 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
EXAMPLES

Example 1

Let’s consider the following legacy screen:

 Figure 2 - 410: Javelin Screen class - Legacy screen

In this example, we want to define a Screen class matching this legacy screen. A Screen class

object has no properties to configure, it is defined by its criteria.

Screen class [

]

The Screen class object is created in the Screen classes folder of the connector, inherited

from the DefaultScreenClass screen class. It is created together with its first criterion and

appears as follows in the Projects view:
2 - 715

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 411: Javelin Screen class - Screen class and first criterion in Projects view

Thanks to its criterion defining the remarquable characteristics of the page, this Screen class

matches the previous legacy screen. For more information about this criterion, see "Find

string" criterion documentation and examples.

Example 2

The sample_documentation_CLI project set in the context of the "Starting with Convertigo

Legacy Integrator" Quick Guide contains a number of Javelin screen classes defined to meet

the project requirements.

The defined Javelin screen classes are named either in accordance with their function

(LoginScreen, ArticlesManagementScreen) or with their screen identifier (MNS10,

MMS01B1, MMS001E).

For example, the login screen including the "Entrez votre nom" (Enter your name) string is

detected as belonging to the LoginScreen screen class:
2 - 716 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 412: Javelin Screen class - LoginScreen screen class

Screens including an identifier are usually named after their identifier (here, MNS10):

 Figure 2 - 413: Javelin Screen class - MNS010 screen class

In the context of the GetArticleData transaction, when the LoginScreen screen class is

detected, its associated screen class handler (entering the user name and password) is

executed, then the subsequent screen class is detected.

Once created, Javelin screen classes appear together with their detection criteria and possible

extraction rules in the Projects view of the Convertigo Studio:
2 - 717

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 414: Javelin Screen class - Project’s screen classes and respective criteria

Every screen class is always child to the DefaultScreenClass screen class. It therefore
2 - 718 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
inherits its default criteria and extraction rules:

 Figure 2 - 415: Javelin Screen class - Inherited criteria and extraction rules

Screen classes appear as follows in the Properties view (here, the LoginScreen screen

class):

 Figure 2 - 416: Javelin Screen class - LoginScreen screen class properties

For more information about the different criteria defined to detect these screen classes, see

"Find string criterion" and "Emulator technology criterion" documentations and examples.
2 - 719

Chapter "Convertigo Objects"
Legacy
2 - 720 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
DEFAULT BLOCK FACTORY

OBJECT DESCRIPTION

The block factory is the process that splits legacy screens into elementary blocks.

For extraction purpose, legacy application screens are broken into elementary entities called

blocks. The process in charge of generating blocks is called Default block factory.

The block generation process can be divided into three major steps:

 The block factory analyses screen lines.

 For each line, the block factory extracts character strings having same attributes (text

color, background color, bold, blinking...).

 For each character string having same attributes, the block factory breaks sentences into

single words by performing a separation on blank spaces. For example, the sentence

the_nice_hat (where "_" represents a blank space) is divided into five blocks: the, _,

nice, _ and hat. Consecutive blank spaces are grouped into one single block.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

The following example illustrates how the Default block factory processes a legacy screen and

breaks it into blocks.

Before the block factory applies, the screen is a sequence of characters.

After it applies, the blocks are generated as described previously:

 Figure 2 - 417: Block generation on legacy application screen (partial view of screen)

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 721

Chapter "Convertigo Objects"
Legacy
2 - 722 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
2.9.2 Criteria
2 - 723

Chapter "Convertigo Objects"
Legacy
EMULATOR TECHNOLOGY

OBJECT DESCRIPTION

Defines the emulator technology used as a criterion for detecting screen classes.

A legacy project declares a unique Emulator technology criterion. It is always associated with

the project's root screen class and cannot be changed or deleted. It is inherited and should

match for all screen classes of a given project.

Available legacy technologies are :

 Bull DKU 7107

 IBM 3270

 IBM 5250

 Minitel

 Unix VT220

Matching condition: This criterion always matches as the emulator technology is defined by the

legacy connector which connects to the legacy application.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.
2 - 724 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
EMPTY SCREEN

OBJECT DESCRIPTION

Defines a legacy screen criterion searching for an empty screen.

The Empty screen criterion applies to legacy applications, which are usually launched from

empty screens. It can be useful to define a screen class in order to detect when Convertigo

doesn't manage to connect to the application.

In this case, it is recommended to use this criterion instead of a Regular expression criterion

for optimizing response time.

Matching condition: This criterion matches the screen class when all screen map lines are

empty.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

If we consider the following legacy screen:

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.
2 - 725

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 418: Empty screen criterion - Legacy screen

We can notice that this screen is empty wherever the block factory has splitted it into blocks

representing screen lines.

The Empty screen criterion will match on this legacy screen.
2 - 726 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
FIND STRING

OBJECT DESCRIPTION

Defines a legacy screen criterion searching for a string into the screen using possibly given

presentation attributes.

Matching conditions: The Find string criterion matches on a screen when:

 the text starting at a given position (line, column) in the screen corresponds to the

searched string,

 this text has defined presentation attributes.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the following legacy screen:

Property Type Category Description

Column int standard Defines the column from which the criterion
should match.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Line int standard Defines the line from which the criterion should
match.

Presentation
attributes

int standard Defines the presentation attributes to match.
This property allows to configure the criterion so
that it matches only to parts of screens having
specific attributes, for example green text on
black background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or not to take into account.

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.

String String standard Defines the string to search.
2 - 727

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 419: Find string criterion - Legacy screen

A Find string criterion is defined as follows:

Find string [

line=0

column=34

attributes=[foreground="white", background="black"]

string="Ouverture"

reverse=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 420: Find string criterion - Configuration example

This criterion matches on the previous legacy screen.
2 - 728 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
REGULAR EXPRESSION (LEGACY)

OBJECT DESCRIPTION

Defines a legacy screen criterion searching for a regular expression into the screen using

possibly given presentation attributes.

Matching conditions: The Regular expression criterion matches on a screen when:

 the text starting at a given position (line, column) in screen corresponds to the defined

regular expression,

 this text is defined with parameterized presentation attributes.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Column int standard Defines the column from which the criterion
should match.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Line int standard Defines the line from which the criterion should
match.

Presentation
attributes

int standard Defines the presentation attributes to match.
This property allows to configure the criterion so
that it matches only to parts of screens having
specific attributes, for example green text on
black background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or not to take into account.

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Regular expression String standard Defines the regular expression to match.
This property allows defining a regular
expression as a string pattern.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.
2 - 729

Chapter "Convertigo Objects"
Legacy
EXAMPLES

Let’s consider the following legacy screen:

 Figure 2 - 421: Regular expression criterion - Legacy screen

A Regular expression criterion is defined as follows:

Regular expression [

line=0

column=34

attributes=[foreground="white", background="black"]

Regular expression="O(u.+){2}"

reverse=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.

Property Type Category Description
2 - 730 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 422: Regular expression criterion - Configuration example

This criterion matches on the previous legacy screen.
2 - 731

Chapter "Convertigo Objects"
Legacy
2.9.3 Extraction rules
2 - 732 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
PRESENTATION
2 - 733

Chapter "Convertigo Objects"
Legacy
STYLE OF BLOCKS

OBJECT DESCRIPTION

Defines a style attribute on blocks displayed in HTML presentation.

The Style of blocks extraction rule is used to change the presentation style of webized screen

elements. It adds a style attribute to blocks matching its selection parameters. The value of

this attribute is a string in CSS format either:

 built by Convertigo using the different properties of the rule,

 or directly defined in the Free style property by Convertigo programmer.

With appropriate XSL templates, this attribute is used to change the style of the displayed

blocks.

Notes:

 The Style of blocks rule is used on static (i.e. non editable) blocks.

 Only the style attribute is added to extracted XML elements.

 Since this rule does not create a new block type, it does not involve any specific XSL

stylesheet. However, the static XSL template does use the style attribute.

 There is no need for the Convertigo developer to know CSS syntax to use this extraction

rule (unless he/she wants to use the Free Style parameter).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Background color int configuration Defines the background color of the block.
The color is chosen into a list of colors.

Bold boolean configuration Defines whether the font is bold or not.

Border boolean configuration Defines whether the element has a border or not.

Border color int configuration Defines the element border color.
The color is chosen into a list of colors.

Border width String configuration Defines the border width (in pixels).
2 - 734 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Font color int configuration Defines the font color.
The color is chosen into a list of colors.

Font family int configuration Defines the font family.
The font family is chosen into a list of fonts.

Font size String configuration Defines the font size (pt for point, px for pixel).

Free style String configuration CSS formatted style, takes place of other styles
defined here.
If used, this parameter overrides all other
parameters. The Convertigo developer can input
a string to be used as value for the style XML
attribute. In order to be compatible with
Convertigo default XSL templates, this string
must be in proper CSS syntax.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Italic boolean configuration Defines whether the font is italic or not.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Property Type Category Description
2 - 735

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

 Figure 2 - 423: Style extraction rule - Legacy screen

Without the rule, the screen title is extracted into the following XML:

 Figure 2 - 424: Style extraction rule - Resulting XML without rule

After XSL transformation, the screen appears webized:

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Underlined boolean configuration Defines whether the font is underlined or not.

Property Type Category Description
2 - 736 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 425: Style extraction rule - Webized page without rule

In this example, we want to increase the title visibility. A Style of blocks extraction rule is

created with the following parameters:

Style of blocks [

screen zone=[x=0, y=0, width=80, height=4]

attributes=[foreground="white" background="black"]

bold=true

font color="coral"

font family="Verdana"

font size="14pt"

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 737

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 426: Style extraction rule - Configuration example

When the rule is executed, a style attribute is added to each matching block and the

resulting XML is as follows:

 Figure 2 - 427: Style extraction rule - Resulting XML with rule

After XSL transformation, thanks to XSL templates, the screen appears webized:
2 - 738 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 428: Style extraction rule - Webized page with rule
2 - 739

Chapter "Convertigo Objects"
Legacy
CONTAINER (LEGACY)

OBJECT DESCRIPTION

Defines a container block grouping blocks together.

The Container extraction rule groups XML elements with same characteristics under a unique

container XML element. This container element can be processed by a specific user-defined

XSL style sheet.

For example, buttons webized via the Command extraction rule can be grouped as a menu

and moved where required, or labels and fields composing a form can be grouped together

and displayed in a frame.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Container layout XMLRectangle configuration Defines the screen zone in which the container
has to be displayed.
This property allows to move the created
container element to a specific area of the
screen. The created block will be created with the
specified screen zone values as positioning
attributes.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0). -1 represents an
undefined value.
These positioning attributes have to be handled
by the XSL template rule that displays the
container.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 740 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Mashup event String configuration Defines mashup events dispatched on click.
Mashup events can be of two types:
• Calling directly a transaction or a sequence in

Convertigo,
• Launching an event in Mashup Composer.
Mashup event property allows to define a
combination of one direct call to a Convertigo
transaction or sequence and/or one launch of
Mashup Composer event. Filling this property
adds a mashup_event attribute to the block,
containing the previous combination in a JSON
syntax of one of the following formats:
• {"requestable":{"__transaction":"<t

ransaction
name>","__connector":"<connector
name>"}} for a transaction call only,

• {"requestable":{"__sequence":"<sequ
ence name>"}} for a sequence call only,

• {{Computer}}{"event":"<event
name>"}{{Computer}} for a mashup event
only,

• {"requestable":{"__transaction":"<t
ransaction
name>","__connector":"<connector
name>"},"event":"<event name>"} for
a transaction call and a mashup event,

• {"requestable":{"__sequence":"<sequ
ence name>"},"event":"<event
name>"} for a sequence call and a mashup
event.

This mashup_event attribute and its content
have to be handled by the XSL file applying at the
end of the transaction to generate a real
Convertigo call and/or Mashup Composer event
on click on the displayed object.

Property Type Category Description
2 - 741

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

XML tag String configuration Defines the container element XML tag name
(default: container).
In order to be processed by XSL template rule,
this element should have a specific tag name.
This property allows to configure the XML tag
name of the created element.

Property Type Category Description
2 - 742 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 429: Container extraction rule - Legacy screen

We can notice that command keywords are present on the bottom of the screen. They are

handled by a specific extraction rule and displayed as buttons in the webized screen.

 Figure 2 - 430: Container extraction rule - Webized page without rule

The XML resulting from this screen is as follows:
2 - 743

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 431: Container extraction rule - Resulting XML without rule

In this example, we want to move the commands buttons to a left menu instead of the bottom

of the page. To do so, a Container extraction rule is created with the following parameters:

Container [

type="keyword"

xml tag="commands"

container layout=[x=0, y=0, width=-1, height=-1]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 432: Container extraction rule - Configuration example

Type property is set to keyword so as command blocks are matching.

Container layout property is edited in the Screen zone editor:
2 - 744 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 433: Container extraction rule - Container layout property edition

Top and Left values are set to 0 in order to position the container block to the top left corner

of the page.

When the rule is executed, the resulting XML includes the matching keyword blocks into a

container type element:

 Figure 2 - 434: Container extraction rule - Resulting XML with rule

After XSL transformation, thanks to commands XSL template, it appears webized:
2 - 745

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 435: Container extraction rule - Webized page with rule
2 - 746 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
COMMON GUI COMPONENTS
2 - 747

Chapter "Convertigo Objects"
Legacy
CHOICE

OBJECT DESCRIPTION

Lists entries expected in a field.

The Choice extraction rule turns a one-character field whose expected content belongs to a

fixed list (for example Y=Yes, N=No) into an XML element of choice type (combo box or radio

buttons) with a predefined list of actions.

Note: XML elements of the choice type are handled by the choice XSL template described

in the choice.xsl file. To change the way choices are displayed in the HTML page, edit this

file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Action label
separators

String configuration When extracting actions from the screen, defines
the character(s) separating a label from the
corresponding action value (if applicable).
For example, if the list of choices is (Y=Yes,
N=No), the action label separator is "=".
This property is used only if actions are extracted
from screen (Options from screen property set
to true).

Actions XMLVector configuration Defines the actions table listing possible actions.
The Actions table is a two-column table:
• Label: defines the action label to be

displayed in the combo box (for example
"Yes"),

• Command: defines the action value to be
sent in the field (for example "Y").

Notes:
• A new action can be added to the list using

the blue keyboard icon. The HTTP headers
defined in the list can be ordered using the
arrow up and arrow down buttons, or deleted
using the red cross icon.

• This property is used only if actions are not
extracted from screen (Options from screen
property set to false).

Actions separators String configuration When extracting actions from the screen, defines
the character(s) separating actions from each
others (if applicable).
For example, if the list of choices is (Y=Yes,
N=No), the actions separator is ",".
This property is used only if actions are extracted
from screen (Options from screen property set
to true).
2 - 748 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

End pattern String configuration When extracting actions from the screen, defines
the actions block end pattern (if applicable).
For example, if actions are grouped between
brackets, the end pattern is the closing bracket.
The rule is applied only if the block ends with this
pattern.
This property is used only if actions are extracted
from screen (Options from screen property set
to true).

Extraction policy int configuration Defines the policy for extracting the action value
(one character to send in the field) related to
each action of the action list.
This property defines how to find the action value
to send in the field corresponding to each action
label from the action list. It can take three values:
• index: the action value is its rank in the

action list,
• character separator: the action value is

separated from its label thanks to a character
separator, which is defined in Action label
separators property,

• first upper letter: the action value is
the first upper letter the action label. This
property is used only if actions are extracted
from screen (Options from screen property
set to true).

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Options from screen boolean configuration Defines whether options should be retrieved from
the screen.
If set to true, possible actions are extracted
from the screen. Otherwise, actions are as set in
the Actions table.

Property Type Category Description
2 - 749

Chapter "Convertigo Objects"
Legacy
Radio buttons boolean configuration Defines whether options should be displayed as
radio buttons or combo box.
If set to true, the extraction rule adds a radio
attribute with the value true to the choice XML
element. Otherwise, it adds a a radio attribute
with the value false.
This attribute is processed by the choice XSL
template in the choice.xsl file. When attribute
value is true, possible actions are displayed as
radio buttons, otherwise, possible actions are
displayed as a combo box.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Start pattern String configuration When extracting actions from the screen, defines
the actions block start pattern (if applicable).
For example, if actions are grouped between
brackets, the start pattern is the opening bracket.
The rule is applied only if the block starts with this
pattern.
This property is used only if actions are extracted
from screen (Options from screen property set
to true).

Tag name String configuration Defines the tag name of the element generated in
output XML after extraction (by default: choice).
By default, the generated element is of choice
type. It is processed by the choice XSL
template in the choice.xsl file.

Property Type Category Description
2 - 750 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
EXAMPLES

In this example, we are dealing with a choice which actions are extracted from screen, with no

label (labels are actions values).

Let’s consider the following legacy screen:

 Figure 2 - 436: Choice extraction rule - Legacy screen

We can notice that the Précision des quantités field is a choice: the list of values to insert in

the field is precised between brackets on the right of the field.

Without the rule, the resulting XML is as follows:

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 751

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 437: Choice extraction rule - Resulting XML without rule

In this example, a Choice extraction rule is created with the following parameters:

Choice [

screen zone=[x=36, y=16, width=25, height=1]

tag name="choice"

options from screen=true

start pattern="("

end pattern=")"

actions separators=","

extraction policy="Character separator"

actions label separators=""

radio=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 438: Choice extraction rule - Configuration example

When the rule is executed, the resulting XML includes the defined choice on matching field

block:
2 - 752 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 439: Choice extraction rule - Resulting XML with rule set to combo box

After XSL transformation, thanks to choice XSL template, it appears webized:

 Figure 2 - 440: Choice extraction rule - Webized page with rule set to combo box

When changing the value of the radio property to true, the resulting XML is as follows:

 Figure 2 - 441: Choice extraction rule - Resulting XML with rule set to radio buttons

After XSL transformation, thanks to choice XSL template, it appears webized:
2 - 753

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 442: Choice extraction rule - Webized page with rule set to radio buttons
2 - 754 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
COMMANDS

OBJECT DESCRIPTION

Defines and handles keywords and commands found in legacy screens.

The Commands extraction rule detects keywords in the screen and transforms them into

keyword type blocks.

Each keyword must be found in a list provided in the Keywords table parameter of the rule.

The rule adds following XML attributes to matching blocks:

 action: the javelin action to be executed on the mainframe,

 data: optional additional data to be sent with the action.

Note: XML elements of the keyword type are handled by the keyword XSL template

described in the keyword.xsl file. To change the way keywords are displayed in the HTML

page, edit this file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Case dependency boolean configuration Defines whether letter case should be respected
in keyword detection.
If set to false, keywords match even if the case
is not similar. For example, pf13 and PF13
match the PF13 keyword.

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 755

Chapter "Convertigo Objects"
Legacy
Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Keywords table XMLVector configuration Defines a list of keywords that can be detected,
with replacement texts, optional data to send and
associated action.
This property is a list of Keywords. For each
Keyword you can define:
• Keyword: Keyword string to handle when

found in the screen,
• Replace Text: Replacement text for the

keyword (hotspot label, optional),
• Sent data: Data to be sent before performing

action (optionnal),
• Action: Action key to be pressed when the

user clicks on the button (action key
corresponding to found keyword).

Notes:
• A new keyword can be added to the list using

the blue keyboard icon. The keywords
defined in the list can be ordered using the
arrow up and arrow down buttons, or deleted
using the red cross icon.

• The order of the keywords defined in this
table is very important, it is used for detection
priority. That means if two keywords can
match on a block, only the first keyword from
this table will be handled for this block.

Property Type Category Description
2 - 756 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Mashup event String configuration Defines mashup events dispatched on click.
Mashup events can be of two types:
• Calling directly a transaction or a sequence in

Convertigo,
• Launching an event in Mashup Composer.
Mashup event property allows to define a
combination of one direct call to a Convertigo
transaction or sequence and/or one launch of
Mashup Composer event. Filling this property
adds a mashup_event attribute to the block,
containing the previous combination in a JSON
syntax of one of the following formats:
• {"requestable":{"__transaction":"<t

ransaction
name>","__connector":"<connector
name>"}} for a transaction call only,

• {"requestable":{"__sequence":"<sequ
ence name>"}} for a sequence call only,

• {{Computer}}{"event":"<event
name>"}{{Computer}} for a mashup event
only,

• {"requestable":{"__transaction":"<t
ransaction
name>","__connector":"<connector
name>"},"event":"<event name>"} for
a transaction call and a mashup event,

• {"requestable":{"__sequence":"<sequ
ence name>"},"event":"<event
name>"} for a sequence call and a mashup
event.

This mashup_event attribute and its content
have to be handled by the XSL file applying at the
end of the transaction to generate a real
Convertigo call and/or Mashup Composer event
on click on the displayed object.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Property Type Category Description
2 - 757

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

 Figure 2 - 443: Commands extraction rule - Legacy screen

We can notice that two command keywords are present on the right of the screen, next to Type

d'échantillon input and Unité de mesure input.

Without the rule, the resulting XML is as follows:

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 758 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 444: Commands extraction rule - Resulting XML without rule

After XSL transformation, the screen appears webized:

 Figure 2 - 445: Commands extraction rule - Webized page without rule

In this example, a Commands extraction rule is created with the following parameters:

Commands [

screen zone=[x=38, y=9, width=21, height=7]

case dependency=false

keywords table={

Keyword [keyword="F4 pour liste" sent data=""

replace text="Liste" action="KEY_PF4"]

}

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 759

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 446: Commands extraction rule - Configuration example

Keywords table property is edited in the Keywords editor:

 Figure 2 - 447: Commands extraction rule - Keywords table property edition

When the rule is executed, the resulting XML includes the defined keyword type elements on

commands matching blocks:
2 - 760 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 448: Commands extraction rule - Resulting XML with rule

After XSL transformation, thanks to keyword XSL template, it appears webized:

 Figure 2 - 449: Commands extraction rule - Webized page with rule
2 - 761

Chapter "Convertigo Objects"
Legacy
FIELD/TEXT

OBJECT DESCRIPTION

Adds a field or text on the webized screen.

Unlike other extraction rules, the Field/Text extraction rule does not extract data from green

screen, but adds text elements on screen.

This rule adds field or static type XML element to the XML document. These elements

are then processed by XSL transformation to display a field or text label in the HTML page.

Notes:

 XML elements of the field type are handled by the field XSL template described in the

field.xsl file. To change the way fields are displayed in the HTML page, edit this file.

 XML elements of the static type are handled by the static XSL template described in

the static.xsl file. To change the way texts are displayed in the HTML page, edit this

file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Field attributes int configuration Defines the generated field/text presentation
attributes.
This property allows to configure the presentation
attributes to set to the created text/field, for
example green text on black background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".
2 - 762 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Field layout XMLRectangle configuration Defines the screen zone where the field/text is to
be displayed.
This property allows to position the created text
or field element to a specific area of the screen.
The created block will be created with the
specified screen zone values as positioning
attributes.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0). -1 represents an
undefined value.
These positioning attributes have to be handled
by the XSL template rule that displays the
element.

Field name String configuration Defines the field name.
When data is submitted by the user through this
field, it is sent to Convertigo as a variable named
after this property. It can then be used in a
transaction. Use the
__field_c<column>_l<line> syntax to have
Convertigo add data on screen at defined line
and column.

Field type String configuration Defines the field/text type.
The element can be either of field or of
static type.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Property Type Category Description
2 - 763

Chapter "Convertigo Objects"
Legacy
Mashup event String configuration Defines mashup events dispatched on click.
Mashup events can be of two types:
• Calling directly a transaction or a sequence in

Convertigo,
• Launching an event in Mashup Composer.
Mashup event property allows to define a
combination of one direct call to a Convertigo
transaction or sequence and/or one launch of
Mashup Composer event. Filling this property
adds a mashup_event attribute to the block,
containing the previous combination in a JSON
syntax of one of the following formats:
• {"requestable":{"__transaction":"<t

ransaction
name>","__connector":"<connector
name>"}} for a transaction call only,

• {"requestable":{"__sequence":"<sequ
ence name>"}} for a sequence call only,

• {{Computer}}{"event":"<event
name>"}{{Computer}} for a mashup event
only,

• {"requestable":{"__transaction":"<t
ransaction
name>","__connector":"<connector
name>"},"event":"<event name>"} for
a transaction call and a mashup event,

• {"requestable":{"__sequence":"<sequ
ence name>"},"event":"<event
name>"} for a sequence call and a mashup
event.

This mashup_event attribute and its content
have to be handled by the XSL file applying at the
end of the transaction to generate a real
Convertigo call and/or Mashup Composer event
on click on the displayed object.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Property Type Category Description
2 - 764 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
EXAMPLES

Since the Field/Text rule does not extract any data from the screen, it is not related to any

relevant green screen sample.

In this example, a first Field/Text extraction rule is created with the following parameters:

Field/Text [

field layout=[x=16, y=10, width=16, height=1]

field attributes=[foreground="green", background="black"]

field type="static"

value="New label"

]

These parameters are edited in the Properties view of the Convertigo Studio:

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Value String configuration Defines the field or text value, depending on the
element type.
If the added element is of:
• field type: the created field is filled with the

value.
• static type: the value is added as static

text on screen.

Property Type Category Description
2 - 765

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 450: Field/Text extraction rule - First configuration example

Field layout property is edited in the Screen zone editor:

 Figure 2 - 451: Field/Text extraction rule - Field layout property edition

Field attributes property is edited in the Attributes editor:
2 - 766 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 452: Field/Text extraction rule - Field attributes property edition

A second Field/Text extraction rule is created with the following parameters:

Field/Text [

field layout=[x=52, y=10, width=10, height=1]

field attributes=[foreground="green", background="black",

underline=true]

field type="field"

field name="__field_c52_l10"

value="New field content"

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 767

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 453: Field/Text extraction rule - Second configuration example

Field layout property is edited in the Screen zone editor:

 Figure 2 - 454: Field/Text extraction rule - Field layout property edition

Field attributes property is edited in the Attributes editor:
2 - 768 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 455: Field/Text extraction rule - Field attributes property edition

When applied, the two Field/Text rules create two XML elements: one of static type and one

of field type:

 Figure 2 - 456: Field/Text extraction rule - Resulting XML

These elements appears in the green screen blocks:
2 - 769

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 457: Fiedl/text extraction rule - Legacy screen with rules

After XSL transformation, thanks to XSL templates, they appear webized:

 Figure 2 - 458: Fiedl/text extraction rule - Webized page with rules
2 - 770 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
FIELDS FOR VT EMULATORS

OBJECT DESCRIPTION

Finds and marks blocks as being of field type.

The Fields for VT emulators extraction rule applies to VT220 integration only. It is used to

recognize fields in VT emulator.

In fact, unlike in IBM mainframes, VT screens including fields are not typed as fields. Field

detection is based on display attributes (background color, foreground color, etc.). When

matching blocks are found, they are added to the XML document as field type XML

elements.

Note:XML elements of the field type are handled by the field XSL template described in

the field.xsl file. To change the way fields are displayed in the HTML page, edit this file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.
2 - 771

Chapter "Convertigo Objects"
Legacy
Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 772 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
DATE

OBJECT DESCRIPTION

Handles fields of date type.

The Date extraction rule applies to Legacy Publishing only. It is intended to detect a field as a

date and to manage it as such. As a consequence, blocks containing a date are extracted as

date blocks with relevant attributes, not as field blocks containing a date as a string.

Note: This rule adds a date type XML element to the XML document. It is associated with the

date XSL template, described in the date.xsl file. On the webized page, a calendar pops-

up when clicking on the date, to select the appropriate value.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Am/pm marker boolean configuration Includes the am_pm_marker attribute.

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Day in month boolean configuration Includes the day attribute.
The day is included on two digits, from 01 to 31.

Day in week, long
name

boolean configuration Includes the day_in_week_long attribute.
The day is included in full spelling.

Day in week, short
name

boolean configuration Includes the day_in_week_short attribute.
The day is included in short (Mon, Tue, Wed,
etc.).

Format String configuration Defines the date format.
This property defines the pattern to be complied
with for the field to be recognized as a date (for
example, dd/mm/yyyy). For more information on
usable symbols, see Appendix "Date format -
Usable symbols".

Hour in am/pm (0-11) boolean configuration Includes the hour_in_day_0_to_11 attribute.

Hour in am/pm (1-12) boolean configuration Includes the hour_in_day_1_to_12 attribute.
2 - 773

Chapter "Convertigo Objects"
Legacy
Hour in day (0-23) boolean configuration Includes the hour_in_day_0_to_23 attribute.

Hour in day (1-24) boolean configuration Includes the hour_in_day_1_to_24 attribute.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Language String configuration Defines the language of the date (ISO 639
compliant).

Millisecond boolean configuration Includes the milliseconds attribute.

Minute in hour boolean configuration Includes the minutes attribute.

Month in year boolean configuration Includes the month attribute.
The month is included on two digits, from 01 to
12.

Month in year, long
name

boolean configuration Includes the month_name_long attribute.
The month is included in full spelling.

Month in year, short
name

boolean configuration Includes the month_name_short attribute.
The month is included in short (Jan, Feb, Mar,
Apr, etc.).

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Second in minute boolean configuration Includes the seconds attribute.

Time zone (General
time zone)

boolean configuration Includes the time_zone_text attribute.

Time zone (RFC 822
time zone)

boolean configuration Includes the time_zone_number attribute.
The time zone is included in accordance with the
RFC-822 standard.

Property Type Category Description
2 - 774 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

 Figure 2 - 459: Date extraction rule - Legacy screen

We can notice that two fields are dates in the screen: Periode1 and Periode2. They are

symbolised by the (MMJJJJ) label on the fields right.

Without a Date extraction rule, the XML resulting from this screen is as follows:

 Figure 2 - 460: Date extraction rule - Resulting XML without rule

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Week in month boolean configuration Includes the week_in_month attribute.
The week of the month is included on two digits.

Week in year boolean configuration Includes the week_in_year attribute.
The week of the year is included on two digits,
from 01 to 52.

Year boolean configuration Includes the year attribute.
The year is included on four digits.

Property Type Category Description
2 - 775

Chapter "Convertigo Objects"
Legacy
When webized, these elements appear as simple fields:

 Figure 2 - 461: Date extraction rule - Webized page without rule

In this example, a Date extraction rule is created with the following parameters:

Date [

type="field"

format="MM-yyyy"

month in year=true

year=true

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 776 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 462: Date extraction rule - Configuration example

When the rule is executed, the resulting XML includes the date type XML elements, with

pattern attribute and others attributes corresponding to date parts selected by the rule

properties:

 Figure 2 - 463: Date extraction rule - Resulting XML with rule
2 - 777

Chapter "Convertigo Objects"
Legacy
After XSL transformation, thanks to date XSL template, it appears webized:

 Figure 2 - 464: Date extraction rule - Webized page with rule
2 - 778 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
PANEL

OBJECT DESCRIPTION

Handles screen panels.

The Panel extraction rule allows the grouping of a set of blocks within a panel. It creates a

panel type element surrounding these blocks.

The extraction rule is based on remarkable character patterns in order to determine:

 the panel position,

 blocks being a part of it.

To determine the panel position, the rule can also use screen attributes. This is mostly the case

for 5250 applications, where windows can be displayed with no border characters, but with

colored borders.

Note: XML elements of the panel type are handled by the panel XSL template described in

the panel.xsl file. To change the way panels are displayed in the HTML page, edit this file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.
2 - 779

Chapter "Convertigo Objects"
Legacy
Minimum number of
sides

int configuration Defines the minimum number of sides for a panel
to be detected.
By default, the rule needs 4 sides for a panel to
be detected. Sometimes, applications display text
in borders (Window description for example).
Borders might therefore not match exactly the
rule parameters, so you can reduce the number
of sides and still have the panel detected.

Panel bottom String configuration Defines the bottom character (zone 7, see "Panel
zone description" table below).

Panel left String configuration Defines the left character (zone 4, see "Panel
zone description" table below).

Panel lower left String configuration Defines the lower left character (zone 6, see
"Panel zone description" table below).

Panel lower right String configuration Defines the lower right character (zone 8, see
"Panel zone description" table below).

Panel right String configuration Defines the right character (zone 5, see "Panel
zone description" table below).

Panel top String configuration Defines the top character (zone 2, see "Panel
zone description" table below).

Panel upper left String configuration Defines the upper left character (zone 1, see
"Panel zone description" table below).

Panel upper right String configuration Defines the upper right character (zone 3, see
"Panel zone description" table below).

Remove blocks in
borders

boolean configuration If checked, all text blocks found in the panel
border are deleted.
In some applications, windows are detected
through their colored border, but there can be
also text in borders. As a result, the webized
screen is of poor quality. Set this parameter to
true to remove text in borders.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Property Type Category Description
2 - 780 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
EXAMPLES

Usually, the Panel rule works by detecting the panel on the screen. You can also specify where

the panel must be searched, by using screen zone parameters.

A panel is defined by the following zones

Each zone of the panel is described by a rule parameter. These parameters correspond to the

Title attribute int selection Defines the attributes of the title of the panel.
In some applications, a panel can contain a text
in the border that corresponds to the window title.
This property allows to configure the presentation
attributes of this title to differentiate it from the
rest of the panel border.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Table 2 - 2: Panel zone description

Zone Description

1 Character defining the panel upper left corner.

2 Character sequence defining the panel upper part.

3 Character defining the panel upper right corner.

4 Character sequence defining the panel left part.

5 Character sequence defining the panel right part.

6 Character defining the panel bottom left corner.

7 Character sequence defining the panel bottom part.

8 Character defining the panel bottom right corner.

9 Blocks that will be grouped within the panel.

Property Type Category Description
2 - 781

Chapter "Convertigo Objects"
Legacy
characters defining the zone.

For example, if we consider the following panel type:

 Figure 2 - 465: Panel type

The panel zones are defined as follows:

Let’s configure this rule on a sample. If we consider the following legacy screen:

Table 2 - 3: Example panel - Zone parameter value

Zone Value

1 +

2 -

3 #

4 |

5 /

6 &

7 =

8 @
2 - 782 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 466: Panel extraction rule - Legacy screen

We can notice the panel that is displayed in the middle of the screen, over the screen content.

Without the rule, the resulting XML is as follows:
2 - 783

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 467: Panel extraction rule - Resulting XML without rule

After XSL transformation, it appears webized:

 Figure 2 - 468: Panel extraction rule - Webized page without rule

In this example, a Panel extraction rule is created with the following parameters:
2 - 784 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Panel [

minimum number of sides=4

panel bottom="."

panel left=":"

panel lower left=":"

panel lower right=":"

panel right=":"

panel top="."

panel upper left="."

panel upper right="."

remove blocks in border=true

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 469: Panel extraction rule - Configuration example

When the rule is executed, the resulting XML includes the detected panel type element

surrounding matching blocks:
2 - 785

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 470: Panel extraction rule - Resulting XML with rule

After XSL transformation, thanks to keyword XSL template, it appears webized:

 Figure 2 - 471: Panel extraction rule - Webized page with rule
2 - 786 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
SEPARATOR

OBJECT DESCRIPTION

Defines how separators are materialized in legacy screens.

The Separator extraction rule defines character strings to be considered as separators. It

searches the screen for strings made of the same character, like series of "minus" signs ("---

-"), or of underscores ("____").

Characters considered as separators are listed in the Separators extraction rule property. The

rule matches strings only if they contain at least the number of occurrences (set as value of the

Minimum number of occurrences property) in one of the specified delimiters.

Notes:

 The separator element has only one new attribute, width, which represents the length of

the separator, that is to say the number of separator characters in the separator string.

 XML elements of the separator type are handled by the separator XSL template

described in the separator.xsl file. To change the way separators are displayed in the

HTML page, edit this file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.
2 - 787

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

Minimum number of
occurrences

int configuration Defines the minimum number of occurrences of
the character in a string to consider it a separator.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Separators String configuration Defines the list of separator characters.
List of all characters which, once chained, are to
be considered as a separator.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

XML tag name String configuration Defines the tag name of the separator block

Property Type Category Description
2 - 788 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 472: Separator extraction rule - Legacy screen

Without the rule, the resulting XML is as follows:

 Figure 2 - 473: Separator extraction rule - Resulting XML without rule

After XSL transformation, the screen appears webized:
2 - 789

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 474: Separator extraction rule - Webized page without rule

In this example, we want to transform the two dashes lines on top and bottom of the screen

into separator. A Separator extraction rule is created with the following parameters:

Separator [

attributes=[foreground="white" background="black"]

separators="¯_"

minimum number of occurrences=10

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 790 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 475: Separator extraction rule - Configuration example

When the rule is executed, the matching blocks are removed from the resulting XML which

includes the two separator type blocks instead:

 Figure 2 - 476: Separator extraction rule - Resulting XML with rule

After XSL transformation, thanks to separator XSL template, the screen appears webized:
2 - 791

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 477: Separator extraction rule - Webized page with rule
2 - 792 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
RECORD (LEGACY)

OBJECT DESCRIPTION

Extract data from screen as a record (set of structured data).

The Record extraction rule extracts legacy data as a structured set of complex XML elements

sharing similarities. For example, a record list can be a list of names and addresses.

A record is defined through a starting and an ending block, each one characterized by a block

type and an XML tag name. In short, a Record rule can be defined as the definition of a pair of

start and end tags indicating where the record starts and ends.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

End separator XML
tag name

String configuration Defines the XML tag name of the separator block
ending the record.

End separator type String configuration Defines the type of the separator block ending
the record.
The end separator default type is separator.
This parameter can take either default (field,
static, etc.) or user-defined types.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.
2 - 793

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

Multiple records boolean configuration Defines whether the record must be defined on a
"per page" basis.
If set to true, one record is generated for each
screen.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Start separator XML
tag name

String configuration Defines the XML tag name of the separator block
starting the record.

Start separator type String configuration Defines type of the separator block starting the
record.
The start separator default type is separator.
This parameter can take either default (field,
static, etc.) or user-defined types.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

XML tag name String configuration Defines the tag name of the XML record
generated in output XML after extraction.

Property Type Category Description
2 - 794 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 478: Record extraction rule - Legacy Screen

Several Tag name extraction rules and a Removing of blocks extraction rule have been set upt

in order to name extracted data and remove the blocks that are not named. The XML resulting

from this screen is as follows:

 Figure 2 - 479: Record extraction rule - Resulting XML without rule

In this example, a Record rule is created with the following parameters:

Record [

screen zone=[x=5, y=7, width=62, height=14]

Start separator type="static"

Start separator XML tag name="nummer"

End separator type="static"

End separator XML tag name="lnk"
2 - 795

Chapter "Convertigo Objects"
Legacy
XML tag="record"

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 480: Record extraction rule - Configuration example

When the rule is executed, the resulting XML includes a record tag container for each set of

data:
2 - 796 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 481: Record extraction rule - Resulting XML with rule

This rule organizes extracted data, it is not meant to be displayed in webized screen.
2 - 797

Chapter "Convertigo Objects"
Legacy
TABLE (LEGACY)

OBJECT DESCRIPTION

Extract data from screen as a table (set of structured data containing rows and columns).

The Table extraction rule structures screen areas including text into a table XML structure. The

generated structure can be used:

 to represent arrays as graphic tables for webization projects, or

 as a structured table for data integration projects.

Prior to running a Table extraction rule, blocks must be properly merged or split so that blocks

can be dispatched in the defined cells.

The Table extraction rule works following two modes:

 Automatic mode (set by default if no column description is provided): the rule

automatically determines the columns of the array and dispatches data in columns

depending on their position to the first line of the array.

 Explicit mode: the rule is based on the column description made by the Convertigo

application programmer to distribute data as required in each column. Each block of the

first line represents a column defined as follows:

 starting position = block starting column

 ending position = (starting position of next block) - 1.

If complex arrays are involved, it is recommended to explicitly describe array columns by

editing the Columns parameter. This is the second mode.

The Table extraction rule is similar to the Subfile extraction rule but must be configured

manually. It supports actions lines, and scrolling. With 5250 environments, it is preferable to

use the Subfile rule if the application complies with CUA (IBM guide line for designing

applications) because the Subfile rule is automatic and does not require a per-screen

configuration.

For all other environments (3270, DKU, VT, etc.), use preferably the Table extraction rule. This

rule allows to output structured arrayed data whatever the input data, provided that you

configure it for a specific screen class.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Actions end pattern String configuration Pattern that ends the block including actions.
Used when actions are extracted from screen.
Some actions lines start and end with patterns:
for example (A=Action B=Bound
C=Create). In this case, the end pattern is the
")" character.
2 - 798 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Actions label
separators

String configuration Defines the list of separator characters used to
separate each action from its action label in the
actions line.
Used when actions are extracted from screen.
In our example, this separator is the = character.

Actions separators String configuration Defines the list of separator characters used in
the actions line to separate two actions (usually
blank space).
Used when actions are extracted from screen.

Actions start pattern String configuration Pattern that starts the block including actions.
Used when actions are extracted from screen.
Some actions lines start and end with patterns:
for example (A=Action B=Bound
C=Create). In this case, the start pattern is the
"(" character.

Actions table XMLVector configuration Defines actions associated with the selection
column.
Each action is described using the following
items:
• Value: value to be typed in by a user in the

selection field (in the selection column) to
perform a specific action. In our example,
would be A.

• Key: key used to validate the action. Usually,
KEY_ENTER for 3270 and 5250 or KEY_XMIT
for BULL DKU.

• Label: label to be displayed to the user when
clicking on the contextual menu. In our
example, Action.

Notes:
• A new action can be added to the list using

the blue keyboard icon. The actions defined
in the list can be ordered using the arrow up
and arrow down buttons, or deleted using the
red cross icon.

• This property is used when no actions line is
displayed on screen (mostly 3270
application). In other cases, actions can be
automatically extracted from the screen by
using the Relative index of the actions line
parameter.

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Property Type Category Description
2 - 799

Chapter "Convertigo Objects"
Legacy
Auto validate boolean configuration Auto validates action triggered after an option
has been chosen in the selection column.
Set this to true if you want the action to be
executed immediately after a user has clicked on
an option of the contextual action menu. Usually
set to false to enable users to click options on
several lines before validating by ENTER.

Columns XMLVector configuration Defines the list of columns of the table, with their
header, position and width.
This parameter explicitly describes the columns
of the array.
For each column, you have to describe the
following elements:
• Label: text of the title displayed (Webization)

and XML tag name of the data (Data
integration). The Label property supports the
"\" character specifying a line break within
the column title.

• Initial column: starting position of the
column (0 based).

• Final column: ending position of the column
(0 based).

• Line index: for "folded" tables where a
logical line of data is represented physically
as several lines. Gives the index of the
physical line starting from 0.

Notes:
• A new column can be added to the list using

the blue keyboard icon. The columns defined
in the list can be ordered using the arrow up
and arrow down buttons, or deleted using the
red cross icon.

• If no column is defined, the rule tries to
automatically define the columns (see
Automatic mode property description).

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Do not accumulate boolean configuration Enables to limit to one page table data
accumulation in a same tag (i.e. create one tag
per page).
Normally, when accumulating data as a table on
several pages (Return property set to
accumulate in a transaction's exit handler),
data come in as new lines of the same table. In
some specific cases, you will want to disable this
feature, by setting this property to true.

Height resize int configuration Defines a number of lines by which increase
(positive value) or decrease (negative value) the
table height.
The webized height of a table is automatically
computed from its number of lines. To enable the
scroll feature, set this property to a number of
lines smaller than the number of physical lines in
the table by setting a negative value into this
property.

Property Type Category Description
2 - 800 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Index of the selection
column

int configuration Defines the selection (or action) column using its
index in the column table.
Equals to 0 in most of the cases. Set to -1 if
there is no selection column.
Selection column definition is important as
contextual menus will only appear if it is correctly
defined.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Keep empty lines boolean configuration Defines whether to keep empty lines from the
table.
Empty table lines are removed by default
(property set to false. Set this property to true
to keep them.

Mashup event String configuration Defines mashup events dispatched on click.
Mashup events can be of two types:
• Calling directly a transaction or a sequence in

Convertigo,
• Launching an event in Mashup Composer.
Mashup event property allows to define a
combination of one direct call to a Convertigo
transaction or sequence and/or one launch of
Mashup Composer event. Filling this property
adds a mashup_event attribute to the block,
containing the previous combination in a JSON
syntax of one of the following formats:
• {"requestable":{"__transaction":"<t

ransaction
name>","__connector":"<connector
name>"}} for a transaction call only,

• {"requestable":{"__sequence":"<sequ
ence name>"}} for a sequence call only,

• {{Computer}}{"event":"<event
name>"}{{Computer}} for a mashup event
only,

• {"requestable":{"__transaction":"<t
ransaction
name>","__connector":"<connector
name>"},"event":"<event name>"} for
a transaction call and a mashup event,

• {"requestable":{"__sequence":"<sequ
ence name>"},"event":"<event
name>"} for a sequence call and a mashup
event.

This mashup_event attribute and its content
have to be handled by the XSL file applying at the
end of the transaction to generate a real
Convertigo call and/or Mashup Composer event
on click on the displayed object.

Property Type Category Description
2 - 801

Chapter "Convertigo Objects"
Legacy
Offset int configuration Defines the table offset (in lines) used to shift the
table position.
After extraction, the table is displayed on the
webized screen exactly where the data zone has
been defined. In most cases, a title line appears
above the table in addition to the table title line.
You can then use the offset parameter to shift the
table up and cover the redundant title line.
Usually set to the number of lines of the title zone
(2 in our example, to shift up the table by two
lines). Please note that the Offset property
supports negative values (moves the webized
table down).

Relative index of the
actions line

int configuration Defines where actions are in relation to the table.
Set this parameter to relative line of the actions
line from the top of the data zone. In our
example, the index is -4. This enables the Table
extraction rule automatically extract the actions
table from the screen. Set this to 0 if no actions
line is to be extracted.

Remove actions line boolean configuration Defines whether to remove actions line or not
from webized screen (leaving the actions as a
popup when clicking a row in the table).
If set to true, the actions line is removed from
the webized screen and shown in selection fields
contextual menu only.

Remove titles boolean configuration Defines whether the title row of the table must be
removed.
When extracted, the XML table contains titles in
the first row, which is useful for webization
projects. But for data integration projects (web
services), titles are usually unwanted. In this
case, set the property to true.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Property Type Category Description
2 - 802 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
EXAMPLES

The sample_documentation_CLI project set in the context of the "Starting with Convertigo

Legacy Integrator" Quick Guide contains a Table extraction rule called ArticlesTable.

The purpose of the ArticlesTable extraction rule is to extract a legacy screen table into a

three-column XML table:

 Figure 2 - 482: Table extraction rule - Legacy screen

A legacy screen table can be divided into several zones, described as follows:

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

XML tag name String configuration Defines the XML tag name for the generated
block (of type "table").
The default XML Tag name (table) can be
overridden using this property. Can be useful for
data integration projects, for example to extract
two tables from the same screen (by setting a
different tag name for each table).

Property Type Category Description
2 - 803

Chapter "Convertigo Objects"
Legacy
Let’s configure this rule on a sample. If we consider the previous legacy screen, we can notice

the four table zones, which indicates that a Table extraction rule can be created.

Without the rule, the XML resulting from this screen is as follows:

 Figure 2 - 483: Table extraction rule - Resulting XML without rule

After XSL transformation, it appears webized:

Table 2 - 4: Table zone description

Table zone Description

Actions line Zone where actions can be launched from in a table. Displayed in the following
format: <StartPattern>
<ActionCode><LabelSeparator><Label><Separator>
<ActionCode><LabelSeparator><Label><Separator>...
<EndPattern>. Not always present.

Titles line Zone where titles are displayed in a table.

Data Zone where data is displayed in a table (corresponding to the Screen zone
property).

Selection column Zone where users input action code to be applied to associated line in the table.
2 - 804 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 484: Table extraction rule - Webized page without rule

In this example, a Table extraction rule is created with the following parameters:

Table [

screen zone=[x=1, y=5, width=78, height=15]

columns={

[Label="Selection" Initial column=1 Final Column=4 Line index=0],

[Label="Code article" Initial column=5 Final Column=21

Line index=0],

[Label="Nom" Initial column=22 Final Column=75 Line index=0]

[Label="Stt" Initial column=76 Final Column=78 Line index=0]

}

index of the selection column=0

relative index of the actions line=-4

actions label separator="="

remove actions line=true

remove titles=false

auto validate=true

height resize=-10

offset=2

xml tag name="articles"

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 805

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 485: Table extraction rule - Configuration example

The Columns property describes the extracted columns of the table. It is edited in the

Columns definition of the table editor:

 Figure 2 - 486: Table extraction rule - Columns property edition

In this sample case, the columns are named after the labels displayed on the screen Code

article, Nom and Stt but they could also be changed in the Label property column of the

editor.
2 - 806 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
The XML tag name sets the name of the table XML tag name in the resulting XML document

(articles). The Screen zone property delineates the screen zone containing data to extract.

After data have been extracted, the corresponding XML is generated as follows:

 Figure 2 - 487: Table extraction rule - Resulting XML

After XSL transformation, thanks to table XSL template, it appears webized:

 Figure 2 - 488: Table extraction rule - Webized page with rule

We can notice the scrollbar that is created by the XSL template thanks to the setting of Resize
2 - 807

Chapter "Convertigo Objects"
Legacy
property with a negative number (that decreases the table height).
2 - 808 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
BUTTON

OBJECT DESCRIPTION

Adds a button on a legacy screen.

Unlike other rules, the Button extraction rule is not designed to extract data from the green

screen, but to add a button on the detected screen.

This rule adds a keyword type XML element to the XML document. The keyword XML

element is then processed by XSL transformation to display a new button in the HTML page.

This element is similar in many ways to the XML elements created by the SNA Commands

extraction rule.

Note: XML elements of the keyword type are handled by the keyword XSL template

described in the keyword.xsl file. To change the way buttons are displayed in the HTML

page, edit this file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Action String configuration Defines the action triggered when pressing the
button.
Action can be:
• a key action as KEY_PF1,
• the name of a transaction if the Transaction

property is set to true.

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".
2 - 809

Chapter "Convertigo Objects"
Legacy
Button layout XMLRectangle configuration Defines the screen zone where the button is to be
displayed.
This property allows to position the created
button element to a specific area of the screen.
The created block will be created with the
specified screen zone values as positioning
attributes.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0). -1 represents an
undefined value.
These positioning attributes have to be handled
by the XSL template rule that displays the button.

Button name String configuration Defines the text displayed on the button.

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

End pattern String configuration Defines the block ending pattern for the rule to be
executed.
Deprecated. It is recommended not to edit this
property.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Property Type Category Description
2 - 810 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Mashup event String configuration Defines mashup events dispatched on click.
Mashup events can be of two types:
• Calling directly a transaction or a sequence in

Convertigo,
• Launching an event in Mashup Composer.
Mashup event property allows to define a
combination of one direct call to a Convertigo
transaction or sequence and/or one launch of
Mashup Composer event. Filling this property
adds a mashup_event attribute to the block,
containing the previous combination in a JSON
syntax of one of the following formats:
• {"requestable":{"__transaction":"<t

ransaction
name>","__connector":"<connector
name>"}} for a transaction call only,

• {"requestable":{"__sequence":"<sequ
ence name>"}} for a sequence call only,

• {{Computer}}{"event":"<event
name>"}{{Computer}} for a mashup event
only,

• {"requestable":{"__transaction":"<t
ransaction
name>","__connector":"<connector
name>"},"event":"<event name>"} for
a transaction call and a mashup event,

• {"requestable":{"__sequence":"<sequ
ence name>"},"event":"<event
name>"} for a sequence call and a mashup
event.

This mashup_event attribute and its content
have to be handled by the XSL file applying at the
end of the transaction to generate a real
Convertigo call and/or Mashup Composer event
on click on the displayed object.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Start pattern String configuration Defines the block starting pattern for the rule to
be executed.
Deprecated. It is recommended not to edit this
property.

Property Type Category Description
2 - 811

Chapter "Convertigo Objects"
Legacy
EXAMPLES

Since the Button rule does not extract any data from the screen, it is not related to any relevant

green screen sample.

In this example, a Button extraction rule is created with the following parameters:

Button [

button layout=[x=9, y=17, width=12, height=1]

button name="Click here"

action="KEY_ENTER"

transaction=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

Transaction boolean configuration Defines whether a transaction must be launched
when clicking the button.
If set to true, defines the launching of the
transaction set in the Action property on button
click, by adding a dotransaction attribute to
the keyword XML element.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 812 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 489: Button extraction rule - Configuration example

Button layout property is edited in the Screen zone editor:

 Figure 2 - 490: Button extraction rule - Button layout property edition

When applied, the Button rule creates an XML element of keyword type:

 Figure 2 - 491: Button extraction rule - Resulting XML

After XSL transformation, thanks to keyword XSL template, it appears webized:
2 - 813

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 492: Button extraction rule - Webized page with rule
2 - 814 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
IMAGE

OBJECT DESCRIPTION

Adds an image on a legacy screen.

Unlike other extraction rules, the Image extraction rule is not designed to extract data from the

green screen, but to add an image on the detected screen.

This rule adds an image type XML element to the XML document. The image XML element

is then processed by XSL transformation to display the image in the HTML page.

Note: XML elements of the image type are handled by the image XSL template described in

the image.xsl file. To change the way images are displayed in the HTML page, edit this file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Action String configuration Defines the action triggered when clicking on the
image.
Action can be:
• a key action as KEY_PF1,
• the name of a transaction if the Transaction

property is set to true.

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Image label String configuration Defines the alternative text displayed when the
image is missing.
2 - 815

Chapter "Convertigo Objects"
Legacy
Image layout XMLRectangle configuration Defines the screen zone where the image is to be
displayed.
This property allows to position the added image
element to a specific area of the screen. The
created block will be created with the specified
screen zone values as positioning attributes.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0). -1 represents an
undefined value.
These positioning attributes have to be handled
by the XSL template rule that displays the image.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Keep image size boolean configuration Defines whether the image must be kept to its
original size or forced into the image layout.
If set to false, the image is sized according to
the image layout.

Property Type Category Description
2 - 816 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Mashup event String configuration Defines mashup events dispatched on click.
Mashup events can be of two types:
• Calling directly a transaction or a sequence in

Convertigo,
• Launching an event in Mashup Composer.
Mashup event property allows to define a
combination of one direct call to a Convertigo
transaction or sequence and/or one launch of
Mashup Composer event. Filling this property
adds a mashup_event attribute to the block,
containing the previous combination in a JSON
syntax of one of the following formats:
• {"requestable":{"__transaction":"<t

ransaction
name>","__connector":"<connector
name>"}} for a transaction call only,

• {"requestable":{"__sequence":"<sequ
ence name>"}} for a sequence call only,

• {{Computer}}{"event":"<event
name>"}{{Computer}} for a mashup event
only,

• {"requestable":{"__transaction":"<t
ransaction
name>","__connector":"<connector
name>"},"event":"<event name>"} for
a transaction call and a mashup event,

• {"requestable":{"__sequence":"<sequ
ence name>"},"event":"<event
name>"} for a sequence call and a mashup
event.

This mashup_event attribute and its content
have to be handled by the XSL file applying at the
end of the transaction to generate a real
Convertigo call and/or Mashup Composer event
on click on the displayed object.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Transaction boolean configuration Defines whether a transaction must be launched
when clicking on the image.
If set to true, defines the launching of the
transaction set in the Action property on image
click, by adding a dotransaction attribute to
the image XML element.

Property Type Category Description
2 - 817

Chapter "Convertigo Objects"
Legacy
EXAMPLES

Since the Image rule does not extract any data from the screen, it is not related to any relevant

green screen sample.

In this example, an Image extraction rule is created with the following parameters:

Image [

image layout=[x=2, y=0, width=12, height=4]

image label="Convertigo logo"

keep image size=true

transaction=false

URL="images/convertigo-small.gif"

]

These parameters are edited in the Properties view of the Convertigo Studio:

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

URL String configuration Defines the image URL.
The URL can be defined either as an absolute or
as a relative (to the project directory) URL.

Z-order String configuration Defines the image z-order.
Filling this property will define a z-order
attribute to the added image. If left empty, no
attribute is added to the image type XML
element.
Note: This attribute has to be handled in the
webization framework to be taken into account.
The image XSL template doesn't handle this
property by default.

Property Type Category Description
2 - 818 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 493: Image extraction rule - Configuration example

Image layout property is edited in the Screen zone editor:

 Figure 2 - 494: Image extraction rule - Image layout property edition

When applied, the Image rule creates an XML element of image type:

 Figure 2 - 495: Image extraction rule - Resulting XML

After XSL transformation, thanks to image XSL template, it appears webized:
2 - 819

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 496: Image extraction rule - Webized page with rule
2 - 820 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
SNA GUI COMPONENTS
2 - 821

Chapter "Convertigo Objects"
Legacy
SNA COMMANDS

OBJECT DESCRIPTION

Defines and handles keywords and commands found in legacy screens for SNA.

The SNA commands extraction rule detects patterns of the form

<KeyName><Separator><Action>, where KeyName must be found in a list provided in the

Keywords table property of the rule.

The rule transforms these blocks into keyword type blocks and adds following XML attributes

to matching blocks:

 action: the javelin action to be executed on the mainframe,

 data: optional additional data to be sent with the action.

Note: XML elements of the keyword type are handled by the keyword XSL template

described in the keyword.xsl file. To change the way keywords are displayed in the HTML

page, edit this file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Case dependency boolean configuration Defines whether letter case should be respected
in keyword detection.
If set to false, keywords match even if the case
is not similar. For example, pf13 and PF13
match the PF13 keyword.

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 822 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Keyword separators String configuration Defines a concatenated list of keyword
separator(s) that can be used.
This property lists separator characters used to
separate each keyword name from its action.
For example, "=" is a keyword separator that
matches the F3=EXIT command.

Keywords table XMLVector configuration Defines a list of keywords that can be detected,
with replacement texts, optional data to send and
associated action.
This property is a list of Keywords. For each
Keyword you can define:
• Keyword: Keyword string to handle when

found in the screen,
• Replace Text: Replacement text for the

keyword (hotspot label, optional),
• Sent data: Data to be sent before performing

action (optionnal),
• Action: Action key to be pressed when the

user clicks on the button (action key
corresponding to found keyword).

Notes:
• A new keyword can be added to the list using

the blue keyboard icon. The keywords
defined in the list can be ordered using the
arrow up and arrow down buttons, or deleted
using the red cross icon.

• The order of the keywords defined in this
table is very important, it is used for detection
priority. That means if two keywords can
match on a block, only the first keyword from
this table will be handled for this block.

Label location int configuration Defines where to search for the label.
The label location value can be one of the
following:
• From right block: the label is to the right

of the keyword. For example: F12=Open
• From left block: the label is to the left of

the keyword. For example: Open=F12
• From block above: the label is on top of

the keyword. For example: DO This F12
• From block below: the label is below the

keyword. For example: F12 Do This

Property Type Category Description
2 - 823

Chapter "Convertigo Objects"
Legacy
Mashup event String configuration Defines mashup events dispatched on click.
Mashup events can be of two types:
• Calling directly a transaction or a sequence in

Convertigo,
• Launching an event in Mashup Composer.
Mashup event property allows to define a
combination of one direct call to a Convertigo
transaction or sequence and/or one launch of
Mashup Composer event. Filling this property
adds a mashup_event attribute to the block,
containing the previous combination in a JSON
syntax of one of the following formats:
• {"requestable":{"__transaction":"<t

ransaction
name>","__connector":"<connector
name>"}} for a transaction call only,

• {"requestable":{"__sequence":"<sequ
ence name>"}} for a sequence call only,

• {{Computer}}{"event":"<event
name>"}{{Computer}} for a mashup event
only,

• {"requestable":{"__transaction":"<t
ransaction
name>","__connector":"<connector
name>"},"event":"<event name>"} for
a transaction call and a mashup event,

• {"requestable":{"__sequence":"<sequ
ence name>"},"event":"<event
name>"} for a sequence call and a mashup
event.

This mashup_event attribute and its content
have to be handled by the XSL file applying at the
end of the transaction to generate a real
Convertigo call and/or Mashup Composer event
on click on the displayed object.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Separator mandatory boolean configuration Defines whether a separator character between
keyword and label is mandatory.
If set to true, a block containing a keyword
(defined in Keywords table property) but which
doesn't have one of the separator characters
(defined in Keyword separators property) next
to it will not match the rule.

Property Type Category Description
2 - 824 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

 Figure 2 - 497: SNA commands extraction rule - Legacy screen

We can notice that six command keywords are present on the bottom of the screen, under the

selection line.

Without the rule, the resulting XML is as follows:

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 825

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 498: SNA commands extraction rule - Resulting XML without rule

After XSL transformation, the screen appears webized:

 Figure 2 - 499: SNA commands extraction rule - Webized page without rule

In this example, a SNA commands extraction rule is created with the following parameters:

SNA commands [

screen zone=[x=1, y=21, width=78, height=2]

case dependency=false

keyword separators="="

keywords table={

Keyword [keyword="F10" sent data="" replace text=""

action="KEY_PF10"],

Keyword [keyword="F11" sent data="" replace text=""

action="KEY_PF11"],

Keyword [keyword="F12" sent data="" replace text=""

action="KEY_PF12"],
2 - 826 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Keyword [keyword="F13" sent data="" replace text=""

action="KEY_PF13"],

Keyword [keyword="F14" sent data="" replace text=""

action="KEY_PF14"],

Keyword [keyword="F15" sent data="" replace text=""

action="KEY_PF15"],

Keyword [keyword="F16" sent data="" replace text=""

action="KEY_PF16"],

Keyword [keyword="F17" sent data="" replace text=""

action="KEY_PF17"],

Keyword [keyword="F18" sent data="" replace text=""

action="KEY_PF18"],

Keyword [keyword="F19" sent data="" replace text=""

action="KEY_PF19"],

Keyword [keyword="F20" sent data="" replace text=""

action="KEY_PF20"],

Keyword [keyword="F21" sent data="" replace text=""

action="KEY_PF21"],

Keyword [keyword="F22" sent data="" replace text=""

action="KEY_PF22"],

Keyword [keyword="F23" sent data="" replace text=""

action="KEY_PF23"],

Keyword [keyword="F24" sent data="" replace text=""

action="KEY_PF24"],

Keyword [keyword="F1" sent data="" replace text=""

action="KEY_PF1"],

Keyword [keyword="F2" sent data="" replace text=""

action="KEY_PF2"],

Keyword [keyword="F3" sent data="" replace text=""

action="KEY_PF3"],

Keyword [keyword="F4" sent data="" replace text=""

action="KEY_PF4"],

Keyword [keyword="F5" sent data="" replace text=""

action="KEY_PF5"],

Keyword [keyword="F6" sent data="" replace text=""

action="KEY_PF6"],

Keyword [keyword="F7" sent data="" replace text=""

action="KEY_PF7"],

Keyword [keyword="F8" sent data="" replace text=""

action="KEY_PF8"],

Keyword [keyword="F9" sent data="" replace text=""

action="KEY_PF9"]

}

label=From right block

separator mendatory=true

]

2 - 827

Chapter "Convertigo Objects"
Legacy
These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 500: SNA commands extraction rule - Configuration example

Keywords table property is edited in the Keywords editor:
2 - 828 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 501: SNA commands extraction rule - Keywords table property edition

The keywords order in this table is very important because it defines the priority of detection.

The F12, F13 and F24 keywords are detected first on corresponding blocks, instead of F1 or

F2 that could also be detected on the same blocks, because they are placed before in the

Keywords table.

When the rule is executed, it changes matching blocks type to keyword and adds action

and data XML attributes:
2 - 829

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 502: SNA commands extraction rule - Resulting XML with rule

After XSL transformation, thanks to keyword XSL template, it appears webized:

 Figure 2 - 503: SNA commands extraction rule - Webized page with rule
2 - 830 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
AS400 MENU

OBJECT DESCRIPTION

Defines an AS/400 like menu.

The AS400 menu extraction rule handles AS/400 and other IBM mainframe application

menus, such as 5250 or 3270 screen menus. In such applications, menus have all a standard

format which the AS400 menu extraction rule automatically manages.

The rule detects in the green screen patterns such as the following:

<number><separator> <menu item label>

The number can be any number. The separator is represented by one character only; it is

set in the Separators property. The menu item label can be any string of characters.

The AS400 menu extraction rule creates an XML element of snamenu type. This element

contains the menu itself, with each line of the menu being tagged as a menuitem element, of

menuitem type.

Each menuitem element includes the following attributes added by the extraction rule:

 id: Number identified in the original text detected as pattern (i.e. number of the menu

item),

 literal: Text content of the menu item (i.e. its label).

Note: XML elements of the snamenu type are handled by the SNA menu XSL template

described in the snamenu.xsl file. To change the way SNA menus are displayed in the HTML

page, edit this file.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 831

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Separators String configuration Defines a concatenated list of separator
characters that can be used between a menu
item number and its label.
This property lists separator characters used to
separate each menu item number from its label.
For example, "." is a separator that matches the
1. User task menu item.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 832 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 504: AS400 menu extraction rule - Legacy screen

We can notice that a menu is present in the middle of the page, listing twelve items.

Without the rule, the resulting XML is as follows:

 Figure 2 - 505: AS400 menu extraction rule - Resulting XML without rule

After XSL transformation, the screen appears webized:
2 - 833

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 506: AS400 menu extraction rule - Webized page without rule

In this example, a AS400 menu extraction rule is created with the following parameters:

AS400 menu [

screen zone=[x=0, y=3, width=79, height=14]

separators="."

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 834 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 507: AS400 menu extraction rule - Configuration example

When the rule is executed, it detects in the green screen blocks that match patterns such as

the following:

<number><separator> <menu item label>

 Figure 2 - 508: AS400 menu extraction rule - Principle

The rule creates a snamenu type block and inserts matching blocks under this element,

tagging them menuitem:
2 - 835

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 509: AS400 menu extraction rule - Resulting XML with rule

The rule also changes menuitem elements type to menuitem and adds id and literal

XML attributes.

After XSL transformation, thanks to snamenu XSL template, it appears webized:

 Figure 2 - 510: AS400 menu extraction rule - Webized page with rule
2 - 836 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
SUBFILE

OBJECT DESCRIPTION

Extracts structured data from an AS/400 like subfile.

The Subfile extraction rule extracts table data from screens for AS/400 specific subfile format.

It is similar to the Table extraction rule, but runs automatically with no need to manually

configure columns.

Subfiles are detected only if required parameters are properly set. A number of conditions must

also be met for the rule to apply:

 End of the subfile zone must be indicated by an end marker string (End, +, More..., etc.),

 Presentation attributes of the end marker must be different than those of the subfile

content (usually white on black background),

 Presentation attributes of data must be different than those of the end marker or titles

(data usually displayed in green on black background),

 Subfile must start with a title line,

 Presentation attributes of titles must be different than those of the subfile content (usually

white on black background, sometimes underlined),

 Each title must be separated from the next by a minimum of 2 spaces (if the title line is

made of one large field only) OR each title is in a distinct AS400 DSPV map field,

 Each title is left-aligned in its column,

 Actions (if any) are to be listed above the subfile,

 Presentation attributes of actions (if any) must be different than those of titles (usually blue

on black background),

 Each action (if any) must respect the following pattern: <action

code><separator><action label>. By default, separator is represented by the

"=" sign. For example: E=Edit, A=Add, etc.

 For actions to be detected, the first column of each non-empty line in the subfile must

contain an input field.

Note: Actions (last four points) are optional for correct subfile detection.

As a conclusion, the subfile structure always follows the same pattern:

<Actions> (optionnal)

<Title line>

<Subfile content>

<End marker>

This order cannot be changed, and no other data can be inserted in the 5250 screen zone of

the subfile.
2 - 837

Chapter "Convertigo Objects"
Legacy
OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Actions line attributes int configuration Defines the attributes of the actions of the subfile
(if existing).
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

End marker string
attributes

int configuration Defines the attributes of the end marker string.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.
2 - 838 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Start detection from
line

int configuration Detects subfile from specified line.
The end marker string is detected by default
anywhere on the screen. You can specify the line
where this detection should start. Useful to ignore
subfile markers that could be present in the
subfile data.

Subfile end marker
strings

String configuration Defines the list of strings that can be used to
detect the end of the subfile.
This string must be located according to the CUA
spec (below last subfile row, to the far right) and
be provided as a comma separated list of marker
strings. Make sure that all of them are set,
including in any language. For example: A
suivre...,Fin,+,Bottom,End,More...

Title row attributes int configuration Defines the attributes of the title row of the
subfile.
Make sure that attributes are described so that all
title lines match. For example, the underline
parameter of this property can be set to "don't
care" to match the normal and underline titles.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Property Type Category Description
2 - 839

Chapter "Convertigo Objects"
Legacy
EXAMPLES

Let’s consider the following legacy screen:

 Figure 2 - 511: Subfile extraction rule - Legacy screen containging CUA subfile

It shows a standard CUA subfile. Subfile zones can be defined as follows:

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Table 2 - 5: Subfile zone description

Subfile Zone Description

Action line Zone where actions can be launched from in a table. Displayed in the
following format: <ActionCode><Separator><Label>. Not always
present.

Property Type Category Description
2 - 840 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Let’s configure this rule on a sample. If we consider the previous legacy screen, we can notice

the five subfile zones, which indicates that a Subfile extraction rule can be created.

Without the rule, the XML resulting from this screen is as follows:

Title line Zone where titles are displayed in the subfile. Usually displayed with
different screen attributes.

Data Zone where data is displayed. The screen attributes of data is usually
different from titles.

Marker string On the subfile, marker such as Bottom, End, More..., Top. Can also
be a "+" sign.

Action column Zone where users input action code to be applied to associated line in
the sufile.

Table 2 - 5: Subfile zone description (...)

Subfile Zone Description
2 - 841

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 512: Subfile extraction rule - Resulting XML without rule

After XSL transformation, it appears webized:
2 - 842 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 513: Table extraction rule - Webized page without rule

In this example, a Subfile extraction rule is created with the following parameters:

Subfile [

actions label separator="="

actions line attributes=[foreground=blue, background=black]

auto-validate=false

end marker string attributes=[foreground=white, background=black]

start detection from line=0

subfile end marker strings="MEER..."

remove actions line=true

title row atrtibutes=[foreground=white, background=black]

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 843

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 514: Subfile extraction rule - Configuration example

The Title row attributes, Actions line attributes and End marker string attributes

properties are edited in the Attributes editor (for example here the End marker string

attributes property):
2 - 844 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 515: Subfile extraction rule - Attributes editior

In this sample case, the Sufbfile end marker string property is set only with one string,

MEER..., corresponding to the one marker that can be found on this screen. The Subfile

extraction rule is then specific to the screens having this marker.

The Screen zone property is not set in this example for the Subfile detection to be performed

on the whole screen.

After data have been extracted, the corresponding XML is generated as follows:
2 - 845

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 516: Subfile extraction rule - Resulting XML

After XSL transformation, thanks to table XSL template, it appears webized:
2 - 846 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 517: Subfile extraction rule - Webized page with rule

We can notice the selection fields contextual menu that opens when clicking on a field of the

action column:

 Figure 2 - 518: Subfile extraction rule - Selection field contextual menu
2 - 847

Chapter "Convertigo Objects"
Legacy
5250 EXTENDED OBJECTS

OBJECT DESCRIPTION

Automatic 5250 extended objects extraction.

This rule automatically detects Extended TN5250 NPTUI objects in mainframe legacy

screens.

Unlike standard extraction rules, the 5250 extended objects rule doens't visually identify

objects in displayed screen. In fact, extended objects are well-defined structures and their

presence in a screen is embedded inside the TN5250 stream. One instance of the rule is then

enough to correctly detect all NPTUI objects in the screen class.

There are various extended, or NPTUI, elements available in such an application. Usual

NPTUI objects are the following:

 Radio buttons: they are extracted as XML elements of choice type, which are handled

by the choice XSL template described in the choice.xsl file. To change the way

choices are displayed in the HTML page, edit this file.

 Checkboxes: they are extracted as XML elements of the checkbox type, which are

handled by the checkbox XSL template described in the checkbox.xsl file. To change

the way checkboxes are displayed in the HTML page, edit this file.

 Windows: they are extracted as XML elements of the panel type, which are handled by

the panel XSL template described in the panel.xsl file. To change the way panels are

displayed in the HTML page, edit this file.

 Continuous fields: they are extracted as XML elements of filed type, which are

handled by the field XSL template described in the field.xsl file. To change the way

fields are displayed in the HTML page, edit this file.

 Buttons: they are extracted as XML elements of keyword type, which are handled by the

keyword XSL template described in the keyword.xsl file. To change the way keywords

are displayed in the HTML page, edit this file.

 Sliders: they are extracted as XML elements of slider type, which are handled by the

slider XSL template described in the slider.xsl file. To change the way sliders are

displayed in the HTML page, edit this file.

OBJECT PROPERTIES

The table below describes the object properties:
2 - 848 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Button boolean configuration Activates the button extraction.
If set to true, the buttons are extracted.

Checkbox boolean configuration Activates the checkbox extraction.
If set to true, the checkboxes are extracted.

Choice boolean configuration Activates the choice field extraction.
If set to true, the choice fields are extracted.

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Menu boolean configuration Activates the menu extraction.
If set to true, the menus are extracted.

Radio boolean configuration Activates the radio button extraction.
If set to true, the radio buttons are extracted.
2 - 849

Chapter "Convertigo Objects"
Legacy
Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Scrollbar boolean configuration Activates the scrolling bar extraction.
If set to true, the scrolling bars are extracted.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Window boolean configuration Activates the window extraction.
If set to true, the windows are extracted.

Property Type Category Description
2 - 850 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
VDX GUI COMPONENTS
2 - 851

Chapter "Convertigo Objects"
Legacy
VIDEOTEX COMMANDS

OBJECT DESCRIPTION

Not yet documented.

For more information, do not hesitate to contact us in the forum in our Developer Network

website: http://www.convertigo.com/itcenter.html
2 - 852 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
EDIT FIELD

OBJECT DESCRIPTION

Not yet documented.

For more information, do not hesitate to contact us in the forum in our Developer Network

website: http://www.convertigo.com/itcenter.html
2 - 853

Chapter "Convertigo Objects"
Legacy
MENU

OBJECT DESCRIPTION

Not yet documented.

For more information, do not hesitate to contact us in the forum in our Developer Network

website: http://www.convertigo.com/itcenter.html
2 - 854 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
BLOCK MANAGEMENT
2 - 855

Chapter "Convertigo Objects"
Legacy
MERGE BLOCKS

OBJECT DESCRIPTION

Merges multiple blocks into one or several bigger blocks.

The Merge blocks extraction rule:

 looks for series of blocks matching the following pattern: [any block #1] [separator

string block] [any block #2]

 merges their content in the first block : ['block #1 content' 'separator string'

'block #2 content']

Separator strings are optional. If not specified, the content of blocks is merged whatsoever,

provided that they match rule selection parameters (Screen zone, Presentation attributes).

By default, the Merge blocks extraction rule works on separate lines, meaning that two blocks

must be on the same line to be merged. However, the rule can be set so that blocks are merged

even if they belong to separate lines. In this case, a line break string can be set.

When two blocks from different lines are merged, this line break string is inserted in their

content: [block nb 1] [separator string block] [block nb 2]

Once merged, the resulting block is as follows:['block nb 1 content' 'separator

string' 'line break string' 'block nb 2 content'].

Notes:

 This rule does not add any specific XML attribute. However, the resulting block inherits the

attributes (column, line, colors...) from the first merged block of the row.

 Since this rule does not create a new block type, it does not involve any specific XSL

stylesheet.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".
2 - 856 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Line separator String configuration Defines the character to add to distinct lines.
If Multiline property is set to true, and if two
blocks belonging to separate lines are merged,
then the string value of this property is inserted
in-between.

Multiline boolean configuration Defines whether the merge should be multiline.
Enables to merge blocks located on different
lines. If set to false, one block will result on
each line; if set to true, one block will result from
all blocks from every lines.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Separator String configuration Defines a separator string, case independent
(optional).
Merges only blocks separated by a third block,
the content of which is equal to the value of the
separator string.
If this property is not filled, the rule merges
matching blocks that are not separated by any
blocks.

Property Type Category Description
2 - 857

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

 Figure 2 - 519: Merge blocks extraction rule - Legacy screen

We notice that the two blocks on the top right corner of the screen (containing the text strings

System and DWH01) are related.

Without the rule, the resulting XML is as follows:

 Figure 2 - 520: Merge blocks extraction rule - Resulting XML without rule

We want to merge the two blocks previously described. To do so in this example, a Merge

blocks extraction rule is created with the following parameters:

Merge blocks [

screen zone=[x=61, y=1, width=15, height=1]

attributes=[foreground="green", background="black"]

separator=""

multiline=false

]

These parameters are edited in the Properties view of the Convertigo Studio:

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 858 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 521: Merge blocks extraction rule - Configuration example

When the Merge blocks extraction rule is executed, it merges the two blocks into one:

 Figure 2 - 522: Merge blocks extraction rule - Resulting XML with rule
2 - 859

Chapter "Convertigo Objects"
Legacy
DELETE BLOCKS

OBJECT DESCRIPTION

Removes blocks from a legacy screen, based on presentation attributes or block position.

To simplify and speed up the process time of other rules, removing useless blocks can be an

option. It limits the quantity of generated XML data and optimizes network traffic.

By default, the rule is created with the Type property set to [^field], meaning that the rule

does not apply to blocks of field type.

The Delete blocks extraction rule is also useful for cleaning up purposes when creating Data

integration projects. Data to be kept are tagged using XML Tagname extraction rules, tables

are tagged using a Table or Subfile extraction rule, and other resulting blocks are tagged as

block. They can then be removed by configuring the Tag name property to block.

The Delete blocks extraction rule can also be used to remove portions of a screen not to be

displayed (in webization projects).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 860 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Content String configuration Defines the regular expression matching the
content of block(s) to be removed.
Blocks which content corresponds to this regular
expression are removed. For example, if set to
TEST, all blocks containing "TEST" are removed.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Length int configuration Defines the length of blocks (without trailing and
ending spaces) to be removed.
-1 means an unspecified length (the length
criterion is not used), 0 means that all blocks
containing only spaces are deleted.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Tag name String configuration Defines the tag name of blocks to be removed.

Property Type Category Description
2 - 861

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

 Figure 2 - 523: Delete blocks extraction rule - Legacy Screen

We want to remove useless text located between the screen title ("Ouverture") and login detail.

Without a Delete blocks extraction rule, the XML resulting from this screen is as follows:

 Figure 2 - 524: Delete blocks extraction rule - Resulting XML without rule

After XSL transformation, they appear webized:

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 862 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 525: Delete blocks extraction rule - Webized page without rule

In this example, a Delete blocks rule is created with the following parameters:

Delete blocks [

screen zone=[x=47, y=1, width=31, height=3]

type="static"

tag name="block"

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 526: Delete blocks extraction rule - Configuration example

When the rule is executed, the resulting XML doesn’t include anymore the top blocks elements:
2 - 863

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 527: Delete blocks extraction rule - Resulting XML with rule

As a result, these elements don’t appear in the dynamically webized screen:

 Figure 2 - 528: Delete blocks extraction rule - Webized page with rule
2 - 864 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
SPLIT BLOCK

OBJECT DESCRIPTION

Splits blocks depending on defined delimiter characters.

The Split block extraction rule allows splitting a block into parts, breaking blocks including a

specified delimiter character into smaller ones. This can be useful when other rules need

separate blocks to be properly processed.

Notes:

 The Split block extraction rule can match any text on a green screen.

 This rule does not add or create new attributes. Resulting blocks inherit most of the

attributes from the original splitted block. Only position attributes (i.e. column and line) are

updated to match actual position on the screen.

 Since this rule does not create a new block type, it does not involve any specific XSL

stylesheet.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Delimiters String configuration Defines a concatenated list of delimiter
characters.
Caution: Default value for this parameter is a
blank space (not easily visible). When setting a
new Split block rule, make sure to delete this
default space before adding new delimiter
character(s).

Is active boolean configuration Defines whether the extraction rule is active.
2 - 865

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Keep delimiters boolean configuration Defines if delimiters should remain included in
generated sub-blocks.
If set to true, delimiter characters are kept upon
splitting, remaining as new blocks of size 1.
Otherwise, delimiter characters are discarded.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 866 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 529: Split block rule - Legacy Screen

Without the rule, the resulting XML is as follows:

 Figure 2 - 530: Split block rule - Resulting XML without rule

In this example, we want to split the title block on "/" character. A Split block extraction rule is

created with the following parameters:

Split block [

screen zone=[x=0, y=0, width=80, height=1]

delimiters="/"

keep delimiters=true

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 867

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 531: Split block extraction rule - Configuration example

With the rule, the resulting XML shows the title is splitted into three blocks, one with the text

before the "/" character, one with the "/" character, and one with the text after the "/" character:

 Figure 2 - 532: Split block rule - Resulting XML with rule
2 - 868 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
TRIM SPACES

OBJECT DESCRIPTION

Removes heading and trailing space characters.

This rules trims blank spaces in blocks. This can be useful in data integration projects where

data extracted from screens contains unwanted heading and trailing spaces.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Left trim boolean configuration Defines whether heading space characters must
be removed.
If set to true, heading space characters are
removed.

Right trim boolean configuration Defines whether trailing space characters must
be removed.
If set to true, trailing space characters are
removed.
2 - 869

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 870 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 533: Trim spaces extraction rule - Legacy screen

We can notice the spaces ath the end of the two lines of the message.

Without rule, the resulting XML is as follows:

 Figure 2 - 534: Trim spaces extraction rule - Resulting XML without rule

A Trim spaces extraction rule is created with the following parameters:

Trim spaces [

screen zone=[x=0, y=2, width=80, height=2]

attributes=[foreground="white", background="black"]

left trim=false

right trim=true

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 871

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 535: Trim spaces extraction rule - Configuration example

When the Trim spaces extraction rule is executed, the spaces that were present at the end of

the two lines are deleted from the blocks:

 Figure 2 - 536: Trim spaces extraction rule - Resulting XML with rule
2 - 872 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
MOVE BLOCKS

OBJECT DESCRIPTION

Moves blocks in a legacy screen.

The Move blocks extraction rule moves blocks extracted from a legacy screen to a different

target position in the screen (defined through the Moving layout property).

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Moving layout XMLRectangle configuration Defines the target screen zone for moved blocks.
This property allows to position the moved blocks
to a specific area of the screen. The moved
blocks will be updated with the specified screen
zone values as positioning attributes.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0). -1 represents an
undefined value.
These positioning attributes have to be handled
by the XSL template rule that displays the blocks.
2 - 873

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

Relative move boolean configuration Defines whether the move is relative to the
original blocks position or not relative.
If set to true, blocks are moved from their
original position to a number of columns and a
number of lines from it. If set to false, blocks
are moved at the exact defined position.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 874 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 537: Move blocks extraction rule - Legacy screen

Without a Move blocks extraction rule, the XML resulting from this screen is as follows:

 Figure 2 - 538: Move blocks extraction rule - Resulting XML without rule

After XSL transformation, the screen appears webized:

 Figure 2 - 539: Move blocks extraction rule - Webized page without rule

In this example, we want to move the top right corner blocks to the top left corner of the screen.

A Move blocks extraction rule is created with the following parameters:

Move blocks [

screen zone=[x=46, y=1, width=33, height=3]

moving layout=[x=4, y=1, width=33, height=3]

relative move=true
2 - 875

Chapter "Convertigo Objects"
Legacy
]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 540: Move blocks extraction rule - Configuration example

Moving layout and Screen zone properties are edited in the Screen zone editor:

 Figure 2 - 541: Move blocks extraction rule - Moving layout property edition

When the rule is executed, the resulting XML includes the new positioning attributes on moved

blocks:
2 - 876 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 542: Move blocks extraction rule - Resulting XML with rule

After XSL transformation, thanks to XSL templates, the screen appears webized:

 Figure 2 - 543: Move blocks extraction rule - Webized page with rule
2 - 877

Chapter "Convertigo Objects"
Legacy
TEXT HANDLING
2 - 878 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
LETTER CASE

OBJECT DESCRIPTION

Changes the letter case.

When extracting information from the screen, this rule changes the data letter case before it is

added to the XML document.

Notes:

 The Letter case extraction rule does not create new XML attributes.

 Since this rule does not create a new block type, it does not involve any specific XSL

stylesheet.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.
2 - 879

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

Letter case int configuration Defines the letter case policy.
This property helps you choosing the letter case
policy to apply on matching blocks between:
• Upper case: matching blocks text will be

transformed to upper case.
• Lower case: matching blocks text will be

transformed to lower case.
• Lower case with first letter

upper case: matching blocks text will be
transformed to lower case with first letter
upper case.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 880 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 544: Letter case extraction rule - Legacy screen

Without the rule, the resulting XML is as follows:

 Figure 2 - 545: Letter case extraction rule - Resulting XML without rule

A Letter Case extraction rule is set on menu items so that output blocks appear in lower case.

In this example, the rule is created with the following parameters:

ChangeLetterCase [

screen zone=[x=19, y=5, width=25, height=8]

letter case="Lower case"

]

When the rule is executed, the resulting XML is then as follows:
2 - 881

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 546: Letter case extraction rule - Resulting XML with rule with "Lower case" property value

Then, the rule is set on the same blocks so that output blocks appear in lower case with the

first letter in upper case.

In this example, the rule is updated with the following parameters:

Letter case [

screen zone=[x=19, y=5, width=25, height=8]

letter case="Lower case with first letter upper case"

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 547: Letter case extraction rule - Configuration example

When the rule is executed, the resulting XML is then as follows:
2 - 882 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 548: Letter case extraction rule - Resulting XML with "Lower case with first letter upper case" property value

After XSL transformation, thanks to XSL templates, it appears webized:

 Figure 2 - 549: Letter case extraction rule - Webized page with rule
2 - 883

Chapter "Convertigo Objects"
Legacy
REPLACE TEXT

OBJECT DESCRIPTION

Replaces occurrences of a specific text in a block.

The Replace text extraction rule replaces texts matching the Searched text property in blocks

defined by presentation attributes or block position.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Regular expression boolean configuration Defines whether the searched text is a regular
expression or not.
If set to true, the searched text parameter is a
regular expression. This allows more flexibility for
text replacements. For example, with 5250
platforms, it is frequent to remove trailing dots at
the end of field descriptions. To do this, set this
parameter to true and set the searched for text
parameter to: .(s.)+
If set to false, the searched text parameter is a
simple text string that will be replaced when
present.

Replacement text String configuration Defines the text that will be used to replace the
searched text.
2 - 884 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Searched text String configuration Defines the text to be replaced or the regular
expression defining text to be replaced.
Depending on Regular expression property, this
property contains a text or a regular expression
to define the searched text.
It is possible to code non ASCII characters using
the following syntax: &#<decimal ASCII
code>;. For example, if the searched text is " "
and the replaced text is , the rule will
replace all regular spaces in a block with the
character of ASCII code 160 representing
unbreakable spaces in HTML.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 885

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

 Figure 2 - 550: Replace text extraction rule - Legacy Screen

We notice that a word is often used in this menu: "Clients". We may want to replace this text

by another. Without a Replace text extraction rule, the XML resulting from this screen is as

follows:

 Figure 2 - 551: Removing of Blocks extraction rule - Resulting XML without rule

After XSL transformation, the screen appears webized:
2 - 886 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 552: Replace text extraction rule - Webized page without rule

In this example, a Replace text extraction rule is created with the following parameters:

Replace text [

screen zone=[x=4, y=2, width=67, height=16]

attributes=[foreground="white", background="black"]

regular expression=true

searched text="(C|c)lients?"

replacement text="Customer(s)"

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 553: Replace text extraction rule - Configuration example

When the rule is executed, the resulting XML includes the string replacements in all matching
2 - 887

Chapter "Convertigo Objects"
Legacy
elements:

 Figure 2 - 554: Replace text extraction rule - Resulting XML with rule

After XSL transformation, thanks to XSL templates, the screen appears webized:

 Figure 2 - 555: Replace text extraction rule - Webized page with rule
2 - 888 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
TRANSLATE TEXT

OBJECT DESCRIPTION

Translates blocks of text according to a given dictionary.

This rule translates the blocks on which it is applied using a dictionary file that is defined by the

Dictionary property.

The translation is applied block by block, meaning that the block text content is searched as

key in the dictionary to find its translation. Blocks have to be split according to dictionary

entries.

In order to manage several languages, the dictionary file name can automatically be extended

with a "lang" suffix which value is retrieved from the lang attribute of the document element

of the output XML.

The lang attribute of the document element is set by Convertigo using the __lang reserved

parameter value. Once the __lang reserved parameter is received, the context keeps and re-

uses this value in every other transaction/sequence output in the same context.

You can also update this attribute by script in a transaction's core. To do so, you can use the

following code in one of its handlers:

dom.getDocumentElement().setAttribute("lang", "en-us");

The dictionary files should always be created with a name of the following form

<baseName>_<lang>.txt, one file by needed language.

One dictionary file should define all text matches between the original application language

and the output language. It should be written using the following format:

 the original text/word on a first line,

 the translated text/word on a second line,

 an empty line as separator,

 etc.

Not found texts/words will appear in the Convertigo engine logs and may be automatically

listed in an orphans file, depending on the Generate orphans list property value.

OBJECT PROPERTIES

The table below describes the object properties:
2 - 889

Chapter "Convertigo Objects"
Legacy
Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Dictionary base path String configuration Base path used to retrieve the dictionary file read
for the translations.
This path is either absolute or relative to
Convertigo environment. Relative paths starting
with:
• ./ are relative to Convertigo workspace,
• .// are relative to current project folder.
The dictionary file path includes the path of the
folder where the dictionary file can be found, the
base name of the file itself, the language and the
file extension. It should be of the following form
<basePath><baseName>_<lang>.txt with:
• the <basePath> being the folder where the

dictionary file can be found,
• the <baseName> being the dictionary file

base name,
• the <lang> being overwritten by the lang

attribute value of the document element of
the output XML.

Note: This property value should only contain
<basePath><baseName>, as the language and
file extension will be automatically added.

Encoding String configuration Defines the encoding used in the dictionary files.
Default value for encoding is UTF-8.

Generate orphans list boolean configuration If true, unknown texts/words are written in a
<basePath><baseName>_<lang>_orphans.
txt file.
Unknown texts/words are block text contents that
are not found in the dictionary. This property can
be activated in development environment to help
the developer finding the dictionary problems or
project inconsistencies.
Note: This should be disabled in production
environment to preserve resources.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 890 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 891

Chapter "Convertigo Objects"
Legacy
OTHERS
2 - 892 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
TAG NAME

OBJECT DESCRIPTION

Names the selected block(s) with a tag name.

The Tag name extraction rule is mostly used in data integration projects. By default, all blocks

are given the block tag name.

Notes:

 The Tag name extraction rule does not create any XML attribute.

 Since this rule does not create a new block type, it does not involve any specific XSL

stylesheet.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Field history boolean configuration Saves the field values that the user has entered.
Applies to field type elements (input fields)
only. If set to true, any data entered in an input
field will be saved in a local history so that when
the user inputs data, he can search it and choose
from saved data.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.
2 - 893

Chapter "Convertigo Objects"
Legacy
Label policy int configuration Defines the labeling policy.
Can take one of the following values:
• Explicit: the tag is named after the XML

tag name property value
• From previous block: the tag is named

after the previous block content. Can be
useful in form-like screen to automatically tag
multiple data fields with the label preceding
the field. For example:

 Label-01 DATA-01
 Label-02 DATA-02
will be automatically tagged as:
 <Label-01>DATA-01<Label-01>
 <Label-02>DATA-02<Label-02>
• From next block: the tag will be set from

the next block content

Mashup event String configuration Defines mashup events dispatched on click.
Mashup events can be of two types:
• Calling directly a transaction or a sequence in

Convertigo,
• Launching an event in Mashup Composer.
Mashup event property allows to define a
combination of one direct call to a Convertigo
transaction or sequence and/or one launch of
Mashup Composer event. Filling this property
adds a mashup_event attribute to the block,
containing the previous combination in a JSON
syntax of one of the following formats:
• {"requestable":{"__transaction":"<t

ransaction
name>","__connector":"<connector
name>"}} for a transaction call only,

• {"requestable":{"__sequence":"<sequ
ence name>"}} for a sequence call only,

• {{Computer}}{"event":"<event
name>"}{{Computer}} for a mashup event
only,

• {"requestable":{"__transaction":"<t
ransaction
name>","__connector":"<connector
name>"},"event":"<event name>"} for
a transaction call and a mashup event,

• {"requestable":{"__sequence":"<sequ
ence name>"},"event":"<event
name>"} for a sequence call and a mashup
event.

This mashup_event attribute and its content
have to be handled by the XSL file applying at the
end of the transaction to generate a real
Convertigo call and/or Mashup Composer event
on click on the displayed object.

Property Type Category Description
2 - 894 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen:

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

XML tag name String configuration Defines the new XML tag name.
If this property is empty, the tag name is
automatically found according to the label policy.

Property Type Category Description
2 - 895

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 556: Tag Name extraction rule - Legacy screen

Without rule, the resulting XML is as follows:
2 - 896 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 557: Tag Name extraction rule - Resulting XML without rule

After having selected a zone in the legacy screen, we apply a Tag name extraction rule to the

selected zone, with the "input" tag name:
2 - 897

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 558: Tag Name extraction rule - Selected zone

A Tag name extraction rule is created with the following parameters:

Tag name [

screen zone=[x=16, y=3, width=63, height=15]

attributes=[foreground="white", background="black",

decoration="underlined"]

label policy=Explicit

XML tag name="input"

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 898 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 559: Tag name extraction rule - Configuration example

We will change some parameters to specify the rule. Here are a few examples of rule usages

changing its parameters:

1 The Label policy parameter is set to Explicit and the XML Tag name property to

input, we add the field type to Type property:

 Figure 2 - 560: Tag name extraction rule - Configuration example
2 - 899

Chapter "Convertigo Objects"
Legacy
As a result, all blocks included in the selected area (see Figure 2 - 558) are tagged with

the specified tag name:

 Figure 2 - 561: Tag Name extraction rule - Resulting XML with rule (Label policy as Explicit)

2 The Label policy parameter is set to From previous block and XML Tag name

and Type properties are reset:
2 - 900 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 562: Tag name extraction rule - Configuration example

As a result, blocks included in the selected area (see Figure 2 - 558) are tagged after

the name of the preceding block:

 Figure 2 - 563: Tag Name extraction rule - Resulting XML with rule (Label policy as From previous block)
2 - 901

Chapter "Convertigo Objects"
Legacy
2 - 902 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
ATTRIBUTE (LEGACY)

OBJECT DESCRIPTION

Adds an XML attribute to the selected blocks.

The blocks are selected based on usual screen selection properties. The Attribute extraction

rule is useful for adding attributes to blocks and have it processed by a specific template.

This rule can add another XML attribute than the one specified in the rule parameters, when

the mashup event property is filled (see mashup event property description).

Notes:

 This rule does not involve any specific template.

 If the attribute exists in a matching block, its value is replaced by the new one.

 This rule applies on any block.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Attribute name String configuration Defines the name of the added attribute.

Attribute value String configuration Defines the value of the added attribute.

Attributes int selection Defines the presentation attributes on which the
rule applies, i.e. the rule applies on blocks
matching these presentation attributes.
This property allows to configure the rule so that
it applies only to parts of screens having specific
attributes, for example green text on black
background.
Presentation attributes to configure are :
• Color: Foreground color, Background

color, to choose in a list of predefined colors
or "not to take into account".

• Decoration: bold, reverse, underlined,
blink, for each decoration choose between
"with the decoration", "normal" (i.e. without
the decoration), or "not to take into account".

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Is final boolean configuration Defines if the extraction is final, i.e. whether
pending extraction rules should try to match on
the current extraction rule matching blocks.
If set to true, once the rule applies on a
matching block, Convertigo doesn't apply the
following rules on this block. This can be used to
prevent a block from being modified by other
rules.
2 - 903

Chapter "Convertigo Objects"
Legacy
Mashup event String configuration Defines mashup events dispatched on click.
Mashup events can be of two types:
• Calling directly a transaction or a sequence in

Convertigo,
• Launching an event in Mashup Composer.
Mashup event property allows to define a
combination of one direct call to a Convertigo
transaction or sequence and/or one launch of
Mashup Composer event. Filling this property
adds a mashup_event attribute to the block,
containing the previous combination in a JSON
syntax of one of the following formats:
• {"requestable":{"__transaction":"<t

ransaction
name>","__connector":"<connector
name>"}} for a transaction call only,

• {"requestable":{"__sequence":"<sequ
ence name>"}} for a sequence call only,

• {{Computer}}{"event":"<event
name>"}{{Computer}} for a mashup event
only,

• {"requestable":{"__transaction":"<t
ransaction
name>","__connector":"<connector
name>"},"event":"<event name>"} for
a transaction call and a mashup event,

• {"requestable":{"__sequence":"<sequ
ence name>"},"event":"<event
name>"} for a sequence call and a mashup
event.

This mashup_event attribute and its content
have to be handled by the XSL file applying at the
end of the transaction to generate a real
Convertigo call and/or Mashup Composer event
on click on the displayed object.

Screen zone XMLRectangle selection Defines the screen zone on which the rule
applies, i.e. the rule applies on blocks completely
contained in this screen area.
This property allows to configure the rule so that
it applies only to areas of screens. All blocks
found within the specified perimeter are matching
this screen zone and can be processed by the
rule.
The screen area is defined through four
coordinates:
• x (area left corner),
• y (area upper corner),
• w (area width),
• h (area height).
All values are given in characters, with the upper
left corner being (x=0, y=0).
-1 represents an undefined value: (x=-1, y=-
1, w=-1, h=-1) is an undefined area
representing the whole screen, i.e. all blocks,
whatever their coordinates, are matching this
screen zone and can be processed by the rule.

Property Type Category Description
2 - 904 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
EXAMPLES

If we consider the following legacy screen, with its title block to be extracted:

 Figure 2 - 564: Attribute extraction rule - Legacy screen

Without the rule, the resulting XML is as follows:

 Figure 2 - 565: Attribute extraction rule - Resulting XML without rule

In this example, an Attribute extraction rule is created with the following parameters:

Attribute [

screen zone=[x=34, y=0, width=9, height=1]

attribute name="isImportant"

attribute value="true"

]

These parameters are edited in the Properties view of the Convertigo Studio:

Type String selection Defines, using a regular expression, to which
block types the rule applies.
For example, if set to:
• static, the rule applies to blocks of static

type only.
• static | field, the rule applies to blocks

of static or field type only.
• [^field], the rule applies to all but field

type blocks.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Property Type Category Description
2 - 905

Chapter "Convertigo Objects"
Legacy
 Figure 2 - 566: Attribute extraction rule - Configuration example

When the rule is executed, the resulting XML includes the defined attribute on matching blocks:

 Figure 2 - 567: Attribute extraction rule - Resulting XML with rule
2 - 906 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
Legacy
SPLIT STRING TO TABLE

OBJECT DESCRIPTION

Not yet documented.

For more information, do not hesitate to contact us in the forum in our Developer Network

website: http://www.convertigo.com/itcenter.html
2 - 907

Chapter "Convertigo Objects"
SiteClipper
2.10 SiteClipper
2 - 908 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
2.10.1 Main objects
2 - 909

Chapter "Convertigo Objects"
SiteClipper
SITE CLIPPER CONNECTOR

OBJECT DESCRIPTION

Establishes connections and clips entire websites through Convertigo.

Site Clipper connector gives access to websites through Convertigo and allows dynamically

transforming its pages or resources. It can access websites from several domains.

All tasks (screen classes detection, data transformation, etc.) associated with the Site Clipper

connector are carried out as defined in the project thanks to several objects:

 Screen classes,

 Criteria,

 Rules,

 Site Clipper transactions.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Billing Java class String expert Defines the Java class name executed for billing
pruposes.
Convertigo supports a plugin architecture offering
billing functionalities. Set the name of the billing
class to be called by Convertigo for billing
purposes.

Carioca
authentication

boolean expert Defines whether the connector requires a
Carioca authentication.
Set to true if you require that only Carioca-
authenticated users be able to use this
connector.

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Default response
charset

String standard Defines the default charset used to decode/
encode data.
Response data specify their charset in a
dedicated header: Content-Type. This header
includes a MIME type and possibly a charset.
The Default response charset property defines
a default charset to use when response data
don't specify their charset. Several values are
possible, for example ISO-8859-1 or UTF-8.
2 - 910 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
Domains listing XMLVector standard Defines a white and/or black list of domains.
The Site Clipper connector can access websites
from several domains. This property allows the
Convertigo developer to define a list of domains
he wants to filter.
For each domain of the list, the Domains listing
table contains two columns:
• Domain: This property is a regular

expression tested against the accessed data
or resources' domain. If the domain matches
the regular expression defined, the behavior
depends on the second column's value, i.e. if
the domain is black-listed or white-listed.

• Black listed: This property can be true for
black-listed domain or false for white-listed
domain.

Note: A new domain can be added to the list
using the blue keyboard icon. The domains
defined in the list can be ordered using the arrow
up and arrow down buttons, or deleted using the
red cross icon.
For each resource or piece of data accessed,
Convertigo tests its domain against each regular
expression defined in the list, one by one. When
one regular expression matches, Convertigo
stops its tests and acts, depending on the Black-
listed column value. You can use the "up" and
"down" arrows to reorder domains tests priorities.
Two behaviors can be defined thanks to this
Domains listing property:
• Default behavior of the Site Clipper

connector is to white-list all unfiltered
domains: every browsing in the accessed
website passes through Convertigo.
Resources and data matching black-listed
domains will be accessed directly, not
through Convertigo.

• The opposite behavior can be obtained by
defining a black-listing regular expression
matching all domains. Then, resources and
data matching white-listed domains will be
the only ones to be accessed through
Convertigo.

Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

End transaction String expert Defines the transaction to execute before
removing the context.
When a Convertigo context is removed, the
specified "End transaction" is executed. Place in
this transaction any clean up code, for example a
Logout transaction.

Property Type Category Description
2 - 911

Chapter "Convertigo Objects"
SiteClipper
EXAMPLES

Example 1

The following is an example of Site Clipper connector set for connecting to every website

without exception:

Site Clipper connector [

default charset encoding=UTF-8

]

In the context of the Convertigo administration website clipping, this connector is used to

implement all mandatory objects: screen classes, criteria, rules, transactions.

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 568: Site Clipper connector - Configuration example

In the Convertigo Studio, the Site Clipper connector editor displaying the generated XML or

the accessed website and the HTTP data and resources accessed through Convertigo

appears as follows:

Trust all certificates boolean standard Defines whether trusted certificates must be
checked.
In SSL mode, the server sends existing
certificates to Convertigo. In most cases, set this
setting to true to automatically trust all server
certificates. If set to false , target server
certificates must be installed in Convertigo.

Property Type Category Description
2 - 912 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 569: Site Clipper connector - Connector editor in Studio

Example 2

The following is an example of Site Clipper connector set with black listed domains.

Let’s consider the french version of the Google website.

 Figure 2 - 570: Site Clipper connector - French version of Google website

In the context of a Site Clipper connector, we would like to clip the entire site, dynamically

access all resources and pages from Google website through Convertigo, except the Maps.

To do so, the Site Clipper connector, named Google_and_blacklist, is configured with the

following parameters:
2 - 913

Chapter "Convertigo Objects"
SiteClipper
Site Clipper connector [

default charset encoding=UTF-8

domains listing: [

[maps\.google\., true]

]

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 571: Site Clipper connector - Configuration example

The Domains listing property contains one entry, in order to blacklist all links and resources

containing maps.google. in their URL.

A screen classes hierarchy is created in this Site Clipper connector with a root screen class,

named Google, defined thanks to a request URL criterion to handle Google ressources only.

On this screen class, two default extraction rules are created in order to handle target URLs of

redirections (Rewrite location header extraction rule) and target URLs of links and resources

(Rewrite absolute URL extraction rule). For more information about this criterion and these

extraction rules, see their specific documentation.

A transaction, named Google_fr_transaction, is created in the Site Clipper connector. It

defines the URL http://www.google.fr as target URL to connect to Google France

search page.

Switch to a browser displaying the test platform of this project. Executing the

Google_fr_transaction transaction (in a new tab thanks to Execute full screen button)

reaches the Google.fr page through Convertigo.

Rolling the mouse over the top left links (Images, Vidéos, etc.) shows links accessing Google

resources through Convertigo (URL starting with http://localhost:18080/

convertigo/...):
2 - 914 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 572: Site Clipper connector - Accessing Google resources through Convertigo

The only link that is accessed directly (not through Convertigo) is Maps. The link URL matches

the blacklisted domain: it has not been rewritten by the extraction rule.

 Figure 2 - 573: Site Clipper connector - Maps domain blacklisted
2 - 915

Chapter "Convertigo Objects"
SiteClipper
SITE CLIPPER TRANSACTION

OBJECT DESCRIPTION

Defines a transaction for a Site Clipper connector.

A Site Clipper transaction allows Convertigo to connect to a remote web server hosted at the

URL defined in Target URL property.

Its execution does not return data from the target server, but specifies a redirection URL to its

parent connector. This rewritten URL is an absolute URL pointing to the current Convertigo

project, with a particular syntax:

 it starts with the usual project's path,

 it then specifies the Convertigo context and the Site Clipper connector to use,

 it ends with the .siteclipper extension,

 after the extension, the target resource URL is concatenated, replacing the '://' symbols

after the target resource protocol, http:// for example, by a '/' character.

This gives the following URL form:

http://<convertigo_server_host>:<convertigo_server_port>/convertigo/

projects/<project_name>/

context=<context_name>,connector=<connector_name>.siteclipper/

<target_resource_protocol>/<target_resource_host>/

<target_resource_URI>.

The Site Clipper connector accessed thanks to this URL then relays all HTTP messages

between the client and the target server.

To sum up, the Site Clipper transaction is used to initiate a site clipping process on a website,

including the initialization of a context in the Convertigo server.

Note: See Site Clipper connector and all related objects (Screen class, criteria, extraction

rules,etc.) documentation for more information on how to manipulate the relayed HTTP data

for site clipping purpose.

OBJECT PROPERTIES

The table below describes the object properties:
2 - 916 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
Property Type Category Description

Accessibility Accessibility standard Defines the transaction/sequence accessibility.
This property can take the following values:
• Public: The transaction/sequence is

runnable from everyone and everywhere,
visible in the Test Platform and is also
exposed in the SOAP WSDL as a web
service method.

• Hidden: The transaction/sequence is
runnable but only from people who know the
execution URL, not visible in the Test
Platform nor exposed in the SOAP WSDL.

• Private: The transaction/sequence is only
runnable from within the Convertigo engine
(Call Transaction/(Call Sequence steps), is
not visible in the Test Platform and cannot be
requested as SOAP web service method.
This value is used for tests, unfinished
transactions/sequences or functionalities not
to be exposed. Private transactions/
sequences remain runnable in the Studio, for
the developer to be able to test its
developments.

Note: In the Test Platform:
• The administrator user (authenticated in

Administration Console or Test Platform) can
see and run all transactions / sequences, no
matter what their accessibility is.

• The test user (authenticated in the Test
Platform or in case of anonymous access)
can see and run public transactions/
sequences and run hidden ones if he knows
their execution URL.

Add statistics to
response

boolean expert Defines whether some statistics of execution of
the transaction/sequence should be added as
data in the transaction/sequence's response.
If this property is set to true, the transaction/
sequence response will be enhanced with the
statistics data of its execution (total time for the
request, time spent waiting for the mainframe,
etc.).
Note: This property has nothing to do with the
general property of the Convertigo engine Insert
statistics in the generated document that can
be edited in the Configuration page of the
Administration Console.
2 - 917

Chapter "Convertigo Objects"
SiteClipper
Authenticated context
required

boolean expert Defines whether an authenticated context is
required to execute the transaction/sequence.
If this property is set to true, the context of
execution of the transaction/sequence must have
been authenticated. Otherwise, the transaction/
sequence is not executed. Default value is
false for a standard access to transactions/
sequences.
Notes:
• When a context is authenticated, all the

contexts in the same HTTP session are also
authenticated. For more information about
context and HTTP session, see Context
general presentation paragraph in JavaScript
Objects APIs chapter.

• When executing a transaction/sequence from
stub (__stub variable passed to true in
entry), this property is ignored. Indeed,
executing from stub is for testing purposes
and should not require any authentication:
the context would never be authenticated as
the transaction/sequence setting the context
as authenticated could also be executed from
stub.

Authenticated user as
cache key

boolean expert Defines whether the authenticated user should
be used as cache key.
When the cache is enabled (Response lifetime
setting filled with a time-to-live), the
Authenticated user as cache key property
allows to specify to use the authenticated user ID
from context/session as an additional key to the
cache.
It would have as effect that two different identified
users cannot retrieve the cached response of the
other for the same request. Default value is
false: the authenticated user is not used as
cache key.

Call the biller boolean expert Defines whether the billing management module
should be called for each generated XML
document.
If this property is set to true, the applicable
billing management module, defined thanks to
the connector's billing class name property, is
invoqued. This parameter should never be
changed (Convertigo private use only).

Character set String expert Defines the character set used for operations on
the generated XML document (default: UTF-8).

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Include certificate
group

boolean expert Includes the certificate group into the cache key.
If set to true, the certificate group is added to
the cache key which is used to determine
whether the transaction's response should be
pulled from the cache or not.
A transaction's cached response is pulled from
the cache when all cache key values are
corresponding to a stored cache entry.

Property Type Category Description
2 - 918 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
EXAMPLES

Let’s consider the Convertigo test platform Home page, listing available projects and giving the

ability to access several applications such as Convertigo Administration website.

 Figure 2 - 574: Response header criterion - Convertigo test platformHome page

In the context of a Site Clipper connector, we would like to clip the entire site, dynamically

access all resources and pages from Convertigo test platform website through Convertigo. To

Response timeout long standard Defines the response maximum waiting time (in
seconds).
Maximum time (in seconds) for a transaction/
sequence to run. When specified time is reached,
the transaction/sequence ends and returns a
timeout error. If requested through the SOAP
interface, the error is returned as a SOAP
exception.

Secure connection
required

boolean expert Defines whether the transaction/sequence
should be called through a secured connection
(e.g. HTTPS).
Depending on the requester, if this property is set
to true, the transaction/sequence must be
accessed through a secure connection (e.g.
HTTPS in case of HTTP access). Default value is
false for a standard access to transactions/
sequences.

Target URL String standard Defines the URL of a remote website to be
clipped by Convertigo.
This property defines the URL to which connect
when starting the site clipping process thanks to
this transaction.

Property Type Category Description
2 - 919

Chapter "Convertigo Objects"
SiteClipper
do so, a screen classes hierarchy is defined thanks to several criteria to identify accesses data

and resources, which are possibly modified by extraction rules defined on these screen

classes.

A transaction, named connectionLocalIP, is defined to connect to this page in the Site

Clipper connector named ConvertigoAdminConnector. It is created with the following

parameters:

Site Clipper transaction [

target URL=http://127.0.0.1:18080/convertigo/index.html

response timeout=60

character set=ISO-8859-1

]

It appears as follows in the Properties view of the Convertigo Studio:

 Figure 2 - 575: Site Clipper transaction - Configuration example

The Target URL property is set to the local IP address for localhost 127.0.0.1 to match

certain screen classes defined in the connector.

The transaction appears as follows in the Projects view:
2 - 920 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 576: Site Clipper transaction - Object in Projects view

Switch to a browser displaying the test platform of this project. Executing the

connectionLocalIP transaction (in a new tab thanks to Execute full screen button)

reaches the Convertigo test platform Home page through Convertigo:

 Figure 2 - 577: Site Clipper transaction - Convertigo test platform Home page accessed through Convertigo

Switching back to the Convertigo Studio, the XML tab of the connector editor shows the

returned XML document which contains the redirection URL to initiate the site clipping:
2 - 921

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 578: Site Clipper transaction - Redirection URL in XML
2 - 922 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
SITE CLIPPER SCREEN CLASS

OBJECT DESCRIPTION

Defines a group of screens with common features in a Site Clipper connector.

By the term "screen" is meant a set of identifiable data which may be rendered to the user or

not. It is generally used regardless of the resource accessed by Convertigo (web page, Legacy

screen, HTTP stream, etc.).

Thus, in the case of Site Clipper connector projects, a screen may be defined by the data

contained in an HTTP message, for a resource request.

A Site Clipper screen class is identified by a set of criteria which are dedicated to screen's data

detection. When accessing a screen (i.e. a web resource), Convertigo looks for detection

criteria defined for screen classes.

Convertigo considers that the accessed screen belongs to the Site Clipper screen class which

all criteria match and which have the greatest number of criteria matching. For screen classes

that would have the same number of matching criteria, Convertigo considers that the screen

belongs to the screen class that has the greatest depth. And if screen classes also have the

same depth, Convertigo considers that the screen belongs to the first screen class in

alphabetical order.

For Site Clipper projects (web applications and HTTP streams in Site Clipper connector),

detection criteria are MIME type, Regular expression, Request header, Response header and

URL.

A Site Clipper screen class can also be associated with extraction rules executed on its

detection by Convertigo. Extraction rules define which data are to be modified from a screen

and turned into an HTTP request or response.

Site Clipper screen classes are pivotal in the execution of transactions, since their detection

triggers the execution of screen class handlers (including actions to be performed on detected

screens) and extraction rules (modifying HTTP data).

Note: A Site Clipper screen class do not define one screen only, but all screens matching the

specified criteria. It is up to the Convertigo programmer to set detection criteria.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

HTTP messages consist of requests from client to server and responses from server to client.

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.
2 - 923

Chapter "Convertigo Objects"
SiteClipper
The Site Clipper works on this client - server conversation and handles each message

exchanged as a "screen" of identifiable data.

HTTP messages are thus of two types (request or response), they declare headers and may

have a body content. Site Clipper detection criteria are based on those information and their

validation identifies a Site Clipper Screen class.

Example 1

Let’s consider the Convertigo test platform Home page, listing available projects and giving the

ability to access several applications such as Convertigo Administration website, Developer

network website, etc.

 Figure 2 - 579: Site Clipper Screen class - Convertigo test platformHome page

This page is a dynamical page, listing projects currently deployed on the server and displaying

information about Convertigo platform on the top of the page (Convertigo version, Engine

version, etc.). These last data are XML resources getted from a web service exposed by the

Convertigo server.

In this example, we want to define a Screen class matching on this XML resources. A Screen

class object has no properties to configure, it is defined by its criteria:

Screen class [

]

The Screen class object is created in the Screen classes folder of the connector, inherited

from the Default_screen_class screen class. It is created together with its first criterion and

appears as follows in the Projects view:
2 - 924 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 580: Site Clipper Screen class - Screen class and first criterion in Projects view

Thanks to its criterion defining the remarquable characteristics of the "screen", this Screen

class matches the previously described web service response data. For more information

about this criterion, see "Response header" criterion documentation and examples.

Example 2

When you create a new Site Clipper project in Convertigo studio, its default connector is

created with:

 a default transaction, named Default_transaction, for which you may modify the

Target URL property value in the creation wizard,

 a default root screen class, named Default_screen_class, including predefined

inherited screen classes to start using and developing a Site Clipper project.

This architecture should be suitable in most cases.

The following table summarizes all the implemented screen classes with their criteria:

The root screen class defines a Rewrite location header rule to process any request of

redirection and an additional Rewrite absolute url rule to rewrite URLs found in the HTTP

response returned by the server. For more information, see the "Rewrite location header" and

Table 2 - 6: newSiteClipperProject project screen classes

Name Description Detection criterion

CSS This screen class will detect all HTTP
responses of CSS type returned by the
server.

A MIME type criterion to
identify stylesheet resources
only.

HTML_pages This screen class will detect all HTTP
responses of HTML type returned by the
server.

A MIME type criterion to
identify HTML pages only.

Javascript This screen class will detect all HTTP
responses of script type returned by the
server.

A MIME type criterion to
identify JavaScript resources
only.

googleResultPageCurrent Detected when accessing a current Google
result page (every page but the last).

Root screen class criterion +
Final Result page criterion +
"Next" link.
2 - 925

Chapter "Convertigo Objects"
SiteClipper
"Rewrite absolute URL" documentations and examples.

Site Clipper screen classes appear together with their detection criteria and rules in the

Projects view of the Convertigo Studio:

 Figure 2 - 581: Site Clipper Screen class - Project’s screen classes, respective criteria and rules

Screen class appear as follows in the Properties view (here, the HTML_pages screen class):

 Figure 2 - 582: Site Clipper Screen class - HTML_pages screen class properties

For more information about the different criteria defined to detect these screen classes, see

"MIME type" criterion documentation and examples.
2 - 926 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
2 - 927

Chapter "Convertigo Objects"
SiteClipper
2.10.2 Criteria
2 - 928 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
REQUEST CRITERIA
2 - 929

Chapter "Convertigo Objects"
SiteClipper
URL (SITECLIPPER)

OBJECT DESCRIPTION

Defines a request criterion based on URL for Site Clipper screen classes.

The URL criterion allows defining a regular expression that is applied on request URL.

By default, the regular expression is tested on base URL. The query string can be added to the

tested URL thanks to the Include query string property.

Matching condition: The URL criterion matches when the regular expression defined in

Regular expression property matches request URL, i.e. if the string pattern described by the

regular expression is found in the request URL.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the Convertigo administration website. In the context of this website clipping, the

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Include query string boolean standard Defines whether the query string should be
concatenated to the base URL for detection.
If this property is set to true, the query string, if
existing, is concatenated to the base URL before
the Regular expression is applied.

Regular expression String standard Defines the regular expression to match.
This property allows defining a regular
expression as a string pattern.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.
2 - 930 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
login phase is automated thanks to an HTML transaction, named LoginAdmin, and then the

user gets the browsing control back on the Configuration page of Convertigo administration

website.

 Figure 2 - 583: URL criterion - Convertigo Administration Configuration page

A Site Clipper connector is defined in the same project for the administration website to be

accessed through Convertigo. It contains a screen classes hierarchy, defined thanks to several

criteria, that identifies accessed data and resources.

A first URL criterion is created to define a root screen class with the following parameters:

URL [

regular expression=\.html$

include query string=false

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 931

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 584: URL criterion - Configuration example

The Regular expression property is defined to match every requested URL ending by

".html". The Include query string property is thus set to false in order to test the base URL

only.

The screen class defined by this criterion is matching every HTML page accessed through the

Site Clipper connector.

Two other URL criterion are created to define two sister screen classes inherited from previous

one. Criteria are set with the following parameters:

URL [

regular expression=localhost

include query string=false

]

URL [

regular expression=127\.0\.0\.1

include query string=false

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 932 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 585: URL criterion - Configuration example

 Figure 2 - 586: URL criterion - Configuration example

The Regular expression property is defined for both criteria to match every requested URL

containing "localhost" or "127.0.0.1" (which is the IP address for localhost).

The screen classes defined by these criteria are matching every HTML web page (criterion

inherited from parent screen class) from local domain accessed through the Site Clipper

connector, differentiating them by the way they are called in the URL: name or IP address.

By definition, these screen classes are matching Convertigo administration website pages

accessed through the Site Clipper connector, possibly connected by the LoginAdmin HTML

transaction.

Both criteria with screen classes they define appear as follows in the Projects view:
2 - 933

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 587: URL criterion - Objects in Projects view

Swith to the test platform of this project in a Firefox web browser, activate Firebug extension.

Executing the LoginAdmin HTML transaction (in a new tab thanks to Execute full screen

button), the user gets the browsing control back on the Configuration page of Convertigo

administration website.
2 - 934 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 588: URL criterion - Browser after the execution of the LoginAdmin transaction

In Firebug, we can see that a response HTTP header, named myConvertigoHeader, was

added by Convertigo to the HTML page resource. This HTTP header is added thanks to an

Add response header extraction rule, one is positionned on each screen class. The header

values are parametered with the screen classes names, which differ between both screen

classes. Thus, this header value reflects the detected screen class.
2 - 935

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 589: URL criterion - Added HTTP header containing detected screen class name

In the test browser, the header value is "localhost" meaning that the screen class defined

by the URL criterion for localhost has matched.

For more information about Add response header extraction rule, see "Add response header"

extraction rule documentation and examples.
2 - 936 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
REQUEST HEADER

OBJECT DESCRIPTION

Defines a request criterion based on HTTP headers for Site Clipper screen classes.

The Request header criterion allows defining a regular expression that is applied on a request

header. Request header to test is defined in Header name property.

Matching condition: The Request header criterion matches when the regular expression

defined in Regular expression property matches defined request header, i.e. if the string

pattern described by the regular expression is found in the request header value.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the Convertigo administration website. In the context of this website clipping, the

login phase is automated thanks to an HTML transaction, named LoginAdmin, and then the

user gets the browsing control back on the Configuration page of Convertigo administration

website.

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Header name String standard Defines the name of the header which content is
tested against the regular expression.

Regular expression String standard Defines the regular expression to match.
This property allows defining a regular
expression as a string pattern.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.
2 - 937

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 590: Match request header criterion - Convertigo Administration Configuration page

A Site Clipper connector is defined in the same project for the administration website to be

accessed through Convertigo. It contains a screen classes hierarchy, defined thanks to several

criteria.

A root screen class is defined to match HTML pages that are accessed through Convertigo.

Inherited screen classes are defined to differentiate localhost named server from local IP calls

in the URL. In "localhost" branch, a child screen class is defined to match every page from

Convertigo Administration website accessed through the Site Clipper connector.

Then, two Request header criteria are created to define two sister screen classes inherited

from previous one. Criteria are set with the following parameters:

Request header [

header name=User-Agent

regular expression=Chrom

]

Request header [

header name=User-Agent

regular expression=Firefox

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 938 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 591: Request header criterion - Configuration example

 Figure 2 - 592: Request header criterion - Configuration example

For both criteria, the Header name property is defined to analyse content of User-Agent

request header. The Regular expression property is differentiating contents to find.

The screen classes defined by these criteria are matching every Convertigo Administration

(parent screen class criterion) HTML web page (criterion inherited from root screen class) from

localhost domain (criterion inherited from parent’s parent screen class) accessed through the

Site Clipper connector, differentiating them by the client requester, i.e. requests coming from

a Chrome browser and requests coming from a Firefox browser.

Both criteria with screen classes they define appear as follows in the Projects view:
2 - 939

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 593: Request header criterion - Objects in Projects view
2 - 940 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
Swithch to the test platform of this project in a Firefox web browser. Executing the

LoginAdmin HTML transaction, the user gets the browsing control back on the Configuration

page of Convertigo administration website.

 Figure 2 - 594: Request header criterion - Browser after the execution of the LoginAdmin transaction in Firefox

Using Firefox browser, we can see that a CSS update, changing background color to green, is

performed in the web page. This update is added thanks to a CSS injector extraction rule, one

is positionned on each screen class.

On the Firefox screen class, the CSS background color is changed to green. On the

Chrome screen class, the CSS background color is changed to cyan.

Swithch to the test platform of this project in a Chrome web browser. Executing the

LoginAdmin HTML transaction again, the user gets the browsing control back on the

Configuration page of Convertigo administration website, with cyan background.
2 - 941

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 595: Request header criterion - Browser after the execution of the LoginAdmin transaction in Chrome

Depending on the browser, the background color is changed to a different color, meaning that

both screen classes defined by Request header criteria are matching for the appropriate case.

For more information about CSS injector extraction rule, see "CSS injector" extraction rule

documentation and examples.
2 - 942 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
RESPONSE CRITERIA
2 - 943

Chapter "Convertigo Objects"
SiteClipper
MIME TYPE

OBJECT DESCRIPTION

Defines a response criterion based on MIME type for Site Clipper screen classes.

The MIME type criterion allows defining a regular expression that is applied on response MIME

type. MIME type is a part of content-type HTTP header.

Matching condition: The MIME type criterion matches when the regular expression defined in

Regular expression property matches response MIME type, i.e. if the string pattern described

by the regular expression is found in the MIME type substring of the content-type header

value.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the Convertigo administration website. In the context of this website clipping, the

login phase is automated thanks to an HTML transaction, named LoginAdmin, and then the

user gets the browsing control back on the Configuration page of Convertigo administration

website.

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Regular expression String standard Defines the regular expression to match.
This property allows defining a regular
expression as a string pattern.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.
2 - 944 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 596: MIME type criterion - Convertigo Administration Configuration page

A Site Clipper connector is defined in the same project for the administration website to be

accessed through Convertigo. It contains a screen classes hierarchy, defined thanks to several

criteria.

A MIME type criterion is created to define a root screen class with the following parameters:

MIME type [

regular expression=text/html

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 597: MIME type criterion - Configuration example

The Regular expression property is defined to match every response MIME type containing

"text/html".
2 - 945

Chapter "Convertigo Objects"
SiteClipper
The screen class defined by this criterion is matching every HTML page accessed through the

Site Clipper connector.

This criterion with the screen class it defines appears as follows in the Projects view:

 Figure 2 - 598: MIME type criterion - Object in Projects view

Swithching to the test platform of this project in a web browser, when executing the

LoginAdmin HTML transaction, the user gets the browsing control back on the Configuration

page of Convertigo administration website.
2 - 946 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 599: MIME type criterion - Browser after the execution of the LoginAdmin transaction

The MIME type criterion matches on this resource.
2 - 947

Chapter "Convertigo Objects"
SiteClipper
REGULAR EXPRESSION (SITECLIPPER)

OBJECT DESCRIPTION

Defines a response criterion based on a regular expression on data content for Site Clipper

screen classes.

The Regular expression criterion allows defining a regular expression that is applied on

response data content.

Matching condition: The Regular expression criterion matches when the regular expression

defined in Regular expression property matches response data content, i.e. if the string

pattern described by the regular expression is found in the response data.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the Convertigo administration website. In the context of this website clipping, the

login phase is automated thanks to an HTML transaction, named LoginAdmin, and then the

user gets the browsing control back on the Configuration page of Convertigo administration

website.

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Regular expression String standard Defines the regular expression to match.
This property allows defining a regular
expression as a string pattern.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.
2 - 948 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 600: Regular expression criterion - Convertigo Administration Configuration page

A Site Clipper connector is defined in the same project for the administration website to be

accessed through Convertigo. It contains a screen classes hierarchy, defined thanks to several

criteria.

A root screen class is defined to match HTML pages that are accessed through Convertigo.

Inherited screen classes are defined to differentiate localhost named server from local IP calls

in the URL.

In "localhost" branch, a child screen class, named AdministrationConsole, is defined

thanks to a response Regular expression criterion, with the following parameters:

Regular expression [

regular expression=Administration Console

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 949

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 601: Regular expression criterion - Configuration example

The Regular expression property is defined to match every response page content containing

"Administration Console".

As "Administration Console" text is appearing as title in every page from the Convertigo server

Administration, the screen class defined by this criterion is matching every page from

Convertigo Administration website accessed through the Site Clipper connector, possibly

connected by the LoginAdmin HTML transaction.

To sum up, the screen class defined by this criterion is matching every Convertigo

Administration (this screen class criterion) HTML web page (criteria inherited from root screen

class) from localhost domain (criterion inherited from parent screen class), accessed through

the Site Clipper connector.

This criterion with the screen class it defines appears as follows in the Projects view:
2 - 950 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 602: Regular expression criterion - Object in Projects view

Swith to the test platform of this project in a Firefox web browser, activate Firebug extension.

Executing the LoginAdmin HTML transaction (in a new tab thanks to Execute full screen

button), the user gets the browsing control back on the Configuration page of Convertigo

administration website.
2 - 951

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 603: Regular expression criterion - Browser after the execution of the LoginAdmin transaction

In Firebug, we can see that response HTTP headers, named myConvertigoHeader and

myConvertigoHeader2, were added by Convertigo to the HTML page resource. These

HTTP headers are added thanks to Add response header extraction rules, one is positionned

on each screen class. The header values are parametered with the screen classes names,

which differ between screen classes. Thus, these headers values reflect the detected screen

classes tree.
2 - 952 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 604: Regular expression criterion - Added HTTP header containing detected screen class names

In the test browser, the header values are "localhost" and "Administration Console",

meaning that the screen class defined by the Regular expression criterion has matched.

For more information about Add response header extraction rule, see "Add response header"

extraction rule documentation and examples.
2 - 953

Chapter "Convertigo Objects"
SiteClipper
RESPONSE HEADER

OBJECT DESCRIPTION

Defines a response criterion based on HTTP headers for Site Clipper screen classes.

The Response header criterion allows defining a regular expression that is applied on a

response header. Response header to test is defined in Header name property.

Matching condition: The Response header criterion matches when the regular expression

defined in Regular expression property matches defined response header, i.e. if the string

pattern described by the regular expression is found in the response header value.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the Convertigo test platform Home page, listing available projects and giving the

ability to access several applications such as Convertigo Administration website, Developer

network website, etc.

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Header name String standard Defines the name of the header which content is
tested against the regular expression.

Regular expression String standard Defines the regular expression to match.
This property allows defining a regular
expression as a string pattern.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.
2 - 954 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 605: Response header criterion - Convertigo test platformHome page

In the context of a Site Clipper connector, a transaction, named connectionLocalIP, is

defined to connect to this page. A screen classes hierarchy is defined thanks to several criteria

to identify accessed data and resources.

A screen class is defined to match XML resources UTF-8 encoded. Such resources are

transfered in order to retrieve information about the Convertigo platform. These information are

displayed on the top of the page (Convertigo version, Engine version, etc.).

To identify this screen class, a Response header criterion is created with the following

parameters:

Response header [

header name=Content-Type

regular expression=text/xml;charset=UTF-8

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 955

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 606: Response header criterion - Configuration example

The Header name property is defined to analyse content of Content-Type header, and the

Regular expression property is set to find "text/xml;charset=UTF-8" content in this

header, which corresponds to finding the text/XML MIME type, plus an UTF-8 charset

encoding.

This criterion with the screen class it defines appears as follows in the Projects view:

 Figure 2 - 607: Response header criterion - Objects in Projects view

Swith to the test platform of this project in a web browser. Executing the

connectionLocalIP Site Clipper transaction (in a new tab thanks to Execute full screen
2 - 956 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
button), the user gets the browsing control back on the Convertigo Projects page.

 Figure 2 - 608: Response header criterion - Browser after the execution of the connectionLocalIP transaction

Using Firefox browser, we can see that replacements have been performed in data contained

in the XML resource: Convertigo actual version is replaced by "my version" text. These

replacements are performed thanks to a Replace string extraction rule, positionned on the

screen class defined thanks to the Response header criterion. This replacements being

performed, this means that the screen class defined by the Response header criterion has

matched.

For more information about Replace string extraction rule, see "Replace string" extraction rule

documentation and examples.
2 - 957

Chapter "Convertigo Objects"
SiteClipper
STATUS-CODE

OBJECT DESCRIPTION

Defines a response criterion based on HTTP Status-Code for Site Clipper screen classes.

The Status-Code criterion allows defining a regular expression that is applied on response

Status-Code.

Matching condition: The Status-Code criterion matches when the regular expression defined

in Regular expression property matches response Status-Code, i.e. if the string pattern

described by the regular expression is found in the Status-Code of the HTTP response.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the Apple website. In the context of this website clipping, a 404 Not Found

Status-Code page can be accessed.

Property Type Category Description

Comment String standard Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Regular expression String standard Defines the regular expression to match.
This property allows defining a regular
expression as a string pattern.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Reverse result boolean expert Defines if the criteria's result should be reversed.
When a criteria is evaluated, it can sometimes be
useful to get the opposite of the standard result
(i.e. when the criteria matches, its result is false,
and when it doesn't match, its result is true). Use
this property to reverse the standard result.
For example, you may define a screen class that
does not contain the text "Hello" in white on black
background. For that, you define a criterion
matching on the text "Hello" in white on black
background, and you reverse it thanks to this
property.
2 - 958 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 609: Status-Code criterion - Apple website 404 Not Found page

In order to demonstrate the Status-Code criterion, the access to this 404 Not Found page is

automated thanks to a Site Clipper transaction, named Access404Page. Then, the user gets

the browsing control back on the Apple website.

This transaction is implemented in a Site Clipper connector, which also contains a screen

classes hierarchy identifying accessed data and resources. A root screen class is defined to

match apple.com website pages accessed through Convertigo thanks to an URL criterion.

A child screen class, named Apple_404, is defined thanks to a response Status-Code

criterion, with the following parameters:

Status-Code [

regular expression=404

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 959

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 610: Status-Code criterion - Configuration example

The Regular expression property is defined to a simple string pattern containing the Status-

Code number "404".

The screen class defined by this criterion is matching every page from Apple website,

accessed through the Site Clipper connector, with the Status-Code containing "404".

This criterion with the screen class it defines appears as follows in the Projects view:
2 - 960 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 611: Status-Code criterion - Object in Projects view

We can see that a Replace string extraction rule is positionned on the screen class. It is

parametered to replace the title usually displayed on the page by another title string. Thus, this

modified title reflects the detection of the screen class.

Swithching to the test platform of this project in a web browser, when executing the

Access404Page Site Clipper transaction, the user gets the browsing control back on the

Apple 404 Not Found web page, modified by Convertigo:
2 - 961

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 612: Status-Code criterion - Browser after the execution of the Access404Page transaction

The title text was modified by Convertigo, the screen class was detected thanks to the Status-

Code criterion.
2 - 962 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
2.10.3 Rules
2 - 963

Chapter "Convertigo Objects"
SiteClipper
REQUEST RULES
2 - 964 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
ADD REQUEST HEADER

OBJECT DESCRIPTION

Adds an HTTP header to a Site Clipper request.

The Add request header extraction rule adds the header defined in Header name property to

the request's headers.

The value set in this header is defined by the Header value property.

If the header defined in the Header name property exists in the request, the Add request

header extraction rule has no effect.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Example 1

Let’s consider the website “request.urih.com” which welcome page displays the headers of the

http request that it receives.

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Header name String configuration Defines the header name.
This property allows to define the name of the
header to add to/modify in/remove from the
request or the response which headers are
manipulated.

Header value String configuration Defines the header value.
This property allows to define the value to set in
the header defined by Header name property.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 965

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 613: Add request header extraction rule - request.urih.com website

In the context of a Site Clipper connector, we would like to clip the entire site and dynamically

add a header to the request to HTML resources that are accessed through Convertigo.

A transaction, named Uri_headers_transaction, is defined as default transaction for the

Site Clipper connector named RequestHeadersConnector. It defines the URL http://

request.urih.com as target URL to connect to the previously described web page.

A screen classes hierarchy is defined thanks to criteria and contains default extraction rules to

identify and handle accessed data and resources.

A screen class, named HTML, is defined thanks to a response MIME type criterion to handle

HTML resources. On this screen class, an Add request header extraction rule is added in order

to add a new request header.

The rule is created with the following parameters:

Add request header [

header name=convertigo

header value=convertigo-header

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 966 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 614: Add request header extraction rule - Configuration example

The extraction rule appears as follows in the Projects view:

 Figure 2 - 615: Add request header extraction rule - Object in Projects view
2 - 967

Chapter "Convertigo Objects"
SiteClipper
Switch to a web browser displaying the test platform of this project (for example Firefox).

Executing the Uri_headers_transaction transaction (in a new tab thanks to Execute full

screen button) reaches the website main page.

The website displays the request HTTP headers that it receives. We can see that the request

HTTP header named convertigo and containing the defined value convertigo-header

was added to the request to the HTML page:

 Figure 2 - 616: Add request header extraction rule - Header added to the request to the website page

Example 2

The purpose of this second example is to show that an already existing request header cannot

be added again nor changed the value by the Add request header extraction rule.

Let’s consider the same context and project as the first example.

In the web browser, we can see the existing accept-encoding header appearing with the

"gzip,deflate" value received when accessing the HTML page resource:
2 - 968 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 617: Add request header extraction rule - accept-encoding header existing on the request to the web page

A screen class, named hasAcceptEncoding, is defined as inherited from previous HTML

screen class. It uses a Request header criterion parametered to detect accept-encoding

header, regardless of its value.

On this screen class, an Add request header extraction rule is added in order to add this

accept-encoding request header again. It is created with the following parameters:

Add request header [

header name=accept-encoding

header value=my-convertigo-encoding

]

A second Add request header extraction rule is added in order to add a new request header to

be sure the screen class has been detected. It is created with the following parameters:

Add request header [

header name=hasAcceptEncoding

header value=hasAcceptEncoding

]

For both extraction rules, the parameters are edited in the Properties view of the Convertigo

Studio:
2 - 969

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 618: Add request header extraction rule - Configuration example

 Figure 2 - 619: Add request header extraction rule - Configuration example

The extraction rules appear as follows in the Projects view:
2 - 970 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 620: Add request header extraction rule - Objects in Projects view

Switch back to the web browser displaying the test platform of this project. Executing the

Uri_headers_transaction transaction (in a new tab thanks to Execute full screen

button) reaches the website main page.

The website displays the request HTTP headers that it receives. We can see that the request

HTTP header named hasAcceptEncoding is added to the request to the HTML page,

meaning that the hasAcceptEncoding screen class has matched. The already existing

accept-encoding header is not added again by the rule and is left unchanged:
2 - 971

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 621: Add request header extraction rule - Header added and header not modified on the request to the web
page

The Add request header extraction rule doesn’t change the value of existing headers nor add

a second header with the same name. If you want to modify an existing header, use a Modify

request header extraction rule instead. For more information about this extraction rule, see

"Modify request header" extraction rule documentation and examples.
2 - 972 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
MODIFY REQUEST HEADER

OBJECT DESCRIPTION

Modifies an HTTP header in a Site Clipper request.

The Modify request header extraction rule modifies an existing header from a request. The

name of the header to modify is defined by the Header name property.

The new value to set in this header is defined by the Header value property.

If the header defined in the Header name property doesn't exist in the request, the Modify

request header extraction rule has no effect.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Example 1

Let’s consider the website “request.urih.com” which welcome page displays the headers of the

http request that it receives.

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Header name String configuration Defines the header name.
This property allows to define the name of the
header to add to/modify in/remove from the
request or the response which headers are
manipulated.

Header value String configuration Defines the header value.
This property allows to define the value to set in
the header defined by Header name property.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 973

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 622: Modify request header extraction rule - request.urih.com website

In the context of a Site Clipper connector, we would like to clip the entire site and dynamically

modify a header from the request to HTML resources that are accessed through Convertigo.

A transaction, named Uri_headers_transaction, is defined as default transaction for the

Site Clipper connector named RequestHeadersConnector. It defines the URL http://

request.urih.com as target URL to connect to the previously described web page.

A screen classes hierarchy is defined thanks to criteria and contains default extraction rules to

identify and handle accessed data and resources. A screen class, named HTML, is defined

thanks to a response MIME type criterion to handle HTML resources.

Finally, a screen class, named hasAcceptEncoding, is defined as inherited from previous

one, using a Request header criterion parametered to detect accept-encoding header,

regardless of its value. On this screen class, an Add request header extraction rule is added

in order to add a new request header, named hasAcceptEncoding, to be sure the screen

class has been detected.

Before adding the new extraction rule, let’s switch to a web browser displaying the test platform

of this project (for example Firefox). Executing the Uri_headers_transaction

transaction (in a new tab thanks to Execute full screen button) reaches the website main

page.
2 - 974 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
We can see that the request HTTP header named hasAcceptEncoding is added to the

request to the HTML page, meaning that the hasAcceptEncoding screen class has

matched. The existing accept-encoding header is appearing with the "gzip,deflate"

value:

 Figure 2 - 623: Modify request header extraction rule - Added header and original accept-encoding header on the
request to the web page

On the hasAcceptEncoding screen class, a Modify request header extraction rule is added

in order to modify the value of this already present accept-encoding request header.

The rule is created with the following parameters:

Modify request header [

header name=accept-encoding

header value=convertigo-encoding

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 975

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 624: Modify request header extraction rule - Configuration example

The extraction rules appear as follows in the Projects view:
2 - 976 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 625: Modify request header extraction rule - Objects in Projects view

Switch back to the web browser displaying the test platform of this project. Executing the

Uri_headers_transaction transaction (in a new tab thanks to Execute full screen

button) reaches the website main page again.

The website displays the request HTTP headers that it receives. We can see that the request

HTTP header named hasAcceptEncoding is still added to the request to the HTML page,

meaning that the hasAcceptEncoding screen class has matched. The already existing

accept-encoding header value is modified by the Modify request header extraction rule:
2 - 977

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 626: Modify request header extraction rule - Added and modified headers on the request to the web page

Example 2

The purpose of this second example is to show that a non-existing request header cannot be

modified nor added by the Modify request header extraction rule.

Let’s consider the same context and project as the first example.

On the hasAcceptEncoding screen class, a Modify request header extraction rule is added

in order to modify a non-existing request header. It is created with the following parameters:

Modify request header [

header name=undefined-header

header value=convertigo

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 978 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 627: Modify request header extraction rule - Configuration example

The extraction rule appears as follows in the Projects view:
2 - 979

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 628: Modify request header extraction rule - Object in Projects view

Switch to a web browser displaying the test platform of this project (for example Firefox).

Executing Uri_headers_transaction transaction (in a new tab thanks to Execute full

screen button) reaches the website main page.

The website displays the request HTTP headers that it receives. We can see that the request

HTTP header named hasAcceptEncoding is added to the request to the HTML page,

meaning that the hasAcceptEncoding screen class has matched. The non-existing

undefined-header header has not been modified nor added by the Modify request header

extraction rule:
2 - 980 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 629: Modify request header extraction rule - Header added on Google HTML page

The Modify request header extraction rule doesn’t change the value nor add non-existing

headers. If you want to add a non-existing header to a request to a resource, use an Add

request header extraction rule instead. For more information about this extraction rule, see

"Add request header" extraction rule documentation and examples.
2 - 981

Chapter "Convertigo Objects"
SiteClipper
REMOVE REQUEST HEADER

OBJECT DESCRIPTION

Removes an HTTP header from a Site Clipper request.

The Remove request header extraction rule removes an existing header from a request. The

name of the header to remove is defined by the Header name property.

If the header defined in the Header name property doesn't exist in the request, the Remove

request header extraction rule has no effect.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the website “request.urih.com” which welcome page displays the headers of the

http request that it receives.

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Header name String configuration Defines the header name.
This property allows to define the name of the
header to add to/modify in/remove from the
request or the response which headers are
manipulated.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 982 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 630: Remove request header extraction rule - request.urih.com website

In the context of a Site Clipper connector, we would like to clip the entire site and dynamically

remove a request header from the request to HTML resources that are accessed through

Convertigo.

A transaction, named Uri_headers_transaction, is defined as default transaction for the

Site Clipper connector named RequestHeadersConnector. It defines the URL http://

request.urih.com as target URL to connect to the previously described web page.

A screen classes hierarchy is defined thanks to criteria and contains default extraction rules to

identify and handle accessed data and resources. A screen class, named HTML, is defined

thanks to a response MIME type criterion to handle HTML resources.

Finally, a screen class, named hasAcceptEncoding, is defined as inherited from previous

one, using a Request header criterion parametered to detect accept-encoding header,

regardless of its value. On this screen class, an Add request header extraction rule is added

in order to add a new request header, named hasAcceptEncoding, to be sure the screen

class has been detected.

Before adding the new extraction rule, let’s switch to a web browser displaying the test platform

of this project (for example Firefox). Executing the Uri_headers_transaction

transaction (in a new tab thanks to Execute full screen button) reaches the website main
2 - 983

Chapter "Convertigo Objects"
SiteClipper
page.

We can see that the request HTTP header named hasAcceptEncoding is added to the

request to the HTML page, meaning that the hasAcceptEncoding screen class has

matched. The existing accept-encoding header is appearing with the "gzip,deflate"

value:

 Figure 2 - 631: Remove request header extraction rule - Added header and original accept-encoding header on the
request to the web page

On the hasAcceptEncoding screen class, a Remove request header extraction rule is

added in order to remove the accept-encoding request header.

The rule is created with the following parameters:

Remove request header [

header name=accept-encoding

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 984 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 632: Remove request header extraction rule - Configuration example

The extraction rules appear as follows in the Projects view:
2 - 985

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 633: Remove request header extraction rule - Objects in Projects view

Switch back to the web browser displaying the test platform of this project. Executing the

Uri_headers_transaction transaction (in a new tab thanks to Execute full screen

button) reaches the website main page again.

The website displays the request HTTP headers that it receives. We can see that the request

HTTP header named hasAcceptEncoding is still added to the request to the HTML page,

meaning that the hasAcceptEncoding screen class has matched. The accept-encoding

header is not appearing anymore, it has been removed by the Remove request header
2 - 986 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
extraction rule:

 Figure 2 - 634: Remove request header extraction rule - Added and removed headers on the request to the web page
2 - 987

Chapter "Convertigo Objects"
SiteClipper
REMOVE REQUEST CACHE HEADERS

OBJECT DESCRIPTION

Removes HTTP cache-related headers from a Site Clipper request.

The Remove request cache headers extraction rule removes all existing cache-related

headers from a request. The following headers are removed:

 Cache-Control,

 If-Match,

 If-Modified-Since,

 If-Range,

 If-None-Match,

 If-Unmodified-Since.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 988 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
REQUEST JS

OBJECT DESCRIPTION

Executes JavaScript code in a Site Clipper request.

The Request JS extraction rule executes JavaScript code defined in the Expression property

in a Site Clipper request.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression configuration Defines the JavaScript expression to execute.
This property is a JavaScript expression that is
executed in the Site Clipper scope.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 989

Chapter "Convertigo Objects"
SiteClipper
RESPONSE RULES
2 - 990 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
RESPONSE JS

OBJECT DESCRIPTION

Executes JavaScript code in a Site Clipper response.

The Response JS extraction rule executes JavaScript code defined in the Expression

property in a Site Clipper response.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Expression JS expression configuration Defines the JavaScript expression to execute.
This property is a JavaScript expression that is
executed in the Site Clipper scope.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 991

Chapter "Convertigo Objects"
SiteClipper
ADD RESPONSE HEADER

OBJECT DESCRIPTION

Adds an HTTP header to a Site Clipper response.

The Add response header extraction rule adds the header defined in Header name property

to the response's headers.

The value set in this header is defined by the Header value property.

If the header defined in the Header name property exists in the response, the Add response

header extraction rule has no effect.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Example 1

Let’s consider the french version of the Google website.

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Header name String configuration Defines the header name.
This property allows to define the name of the
header to add to/modify in/remove from the
request or the response which headers are
manipulated.

Header value String configuration Defines the header value.
This property allows to define the value to set in
the header defined by Header name property.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 992 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 635: Add response header extraction rule - French version of Google website

In the context of a Site Clipper connector, we would like to clip the entire site and dynamically

add a response header on HTML resources that are accessed through Convertigo.

A transaction, named Google_fr_transaction, is defined as default transaction for the

Site Clipper connector named GoogleResponseHeaders. It defines the URL http://

www.google.fr as target URL to connect to Google France search page.

A screen classes hierarchy is defined thanks to criteria and contains default extraction rules to

identify and handle accessed data and resources.

A screen class, named Google_Html_Page, is defined thanks to a response MIME type

criterion to handle HTML resources. On this screen class, an Add response header extraction

rule is added in order to add a new response header.

The rule is created with the following parameters:

Add response header [

header name=convertigo

header value=googleHTMLpage

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 993

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 636: Add response header extraction rule - Configuration example

The extraction rule appears as follows in the Projects view:

 Figure 2 - 637: Add response header extraction rule - Object in Projects view
2 - 994 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
Switch to a Firefox browser displaying the test platform of this project, activate Firebug

extension. Executing the Google_fr_transaction transaction (in a new tab thanks to

Execute full screen button) reaches the Google main page.

In Firebug, we can see that the response HTTP header named convertigo and containing

the defined value googleHTMLpage was added to the HTML page resource:

 Figure 2 - 638: Add response header extraction rule - Header added on Google HTML page

Example 2

The purpose of this second example is to show that an already existing response header

cannot be added again nor changed the value by the Add response header extraction rule.

Let’s consider the same context and project as the first example.

In Firebug, we can see the existing content-type header appearing with the "text/

html;charset=UTF-8" value received when accessing the HTML page resource:
2 - 995

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 639: Add response header extraction rule - content-type header existing on Google HTML page

A screen class, named hasContentType, is defined as inherited from previous

Google_Html_Page screen class. It uses a Response header criterion parametered to detect

content-type header, regardless of its value.

On this screen class, an Add response header extraction rule is added in order to add this

content-type response header again. It is created with the following parameters:

Add response header [

header name=content-type

header value=convertigo

]

A second Add response header extraction rule is added in order to add a new response header

to be sure the screen class has been detected. It is created with the following parameters:

Add response header [

header name=hasContentType

header value=hasContentType

]

For both extraction rules, the parameters are edited in the Properties view of the Convertigo

Studio:
2 - 996 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 640: Add response header extraction rule - Configuration example

 Figure 2 - 641: Add response header extraction rule - Configuration example

The extraction rules appear as follows in the Projects view:
2 - 997

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 642: Add response header extraction rule - Objects in Projects view

Switch to a Firefox browser displaying the test platform of this project, activate Firebug

extension. Executing the Google_fr_transaction transaction (in a new tab thanks to

Execute full screen button) reaches the Google main page.

In Firebug, we can see that the response HTTP header named hasContentType is added to

the HTML page resource, meaning that the hasContentType screen class has matched. The

already existing content-type header is not added again by the rule and is left unchanged:
2 - 998 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 643: Add response header extraction rule - Header added and header not modified on Google HTML page

The Add response header extraction rule doesn’t change the value of existing headers nor add

a second header with the same name. If you want to modify an existing header, use a Modify

response header extraction rule instead. For more information about this extraction rule, see

"Modify response header" extraction rule documentation and examples.
2 - 999

Chapter "Convertigo Objects"
SiteClipper
MODIFY RESPONSE HEADER

OBJECT DESCRIPTION

Modifies an HTTP header in a Site Clipper response.

The Modify response header extraction rule modifies an existing header from a response. The

name of the header to modify is defined by the Header name property.

The new value to set in this header is defined by the Header value property.

If the header defined in the Header name property doesn't exist in the response, the Modify

response header extraction rule has no effect.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Example 1

Let’s consider the french version of the Google website.

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Header name String configuration Defines the header name.
This property allows to define the name of the
header to add to/modify in/remove from the
request or the response which headers are
manipulated.

Header value String configuration Defines the header value.
This property allows to define the value to set in
the header defined by Header name property.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 1000 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 644: Modify response header extraction rule - French version of Google website

In the context of a Site Clipper connector, we would like to clip the entire site and dynamically

modify a response header on HTML resources that are accessed through Convertigo.

A transaction, named Google_fr_transaction, is defined as default transaction for the

Site Clipper connector named GoogleResponseHeaders. It defines the URL http://

www.google.fr as target URL to connect to Google France search page.

A screen classes hierarchy is defined thanks to criteria and contains default extraction rules to

identify and handle accessed data and resources. A screen class, named

Google_Html_Page, is defined thanks to a response MIME type criterion to handle HTML

resources.

Finally, a screen class, named hasContentType, is defined as inherited from previous one,

using a Response header criterion parametered to detect content-type header, regardless

of its value. On this screen class, an Add response header extraction rule is added in order to

add a new response header, named hasContentType, to be sure the screen class has been

detected.

Before adding the new extraction rule, let’s switch to a Firefox browser displaying the test

platform of this project, with the Firebug extension activated. Executing the

Google_fr_transaction transaction (in a new tab thanks to Execute full screen button)

reaches the Google main page.

In Firebug, we can see that the response HTTP header named hasContentType is added to

the HTML page resource, meaning that the hasContentType screen class has matched. The

existing content-type header is appearing with the "text/html;charset=UTF-8" value:
2 - 1001

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 645: Modify response header extraction rule - Added header and original content-type header on Google
HTML page

On the hasContentType screen class, a Modify response header extraction rule is added in

order to modify the value of this already present content-type response header.

The rule is created with the following parameters:

Modify response header [

header name=content-type

header value=text/plain

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 1002 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 646: Modify response header extraction rule - Configuration example

The extraction rules appear as follows in the Projects view:
2 - 1003

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 647: Modify response header extraction rule - Objects in Projects view

Switch back to Firefox browser displaying the test platform of this project, with Firebug

extension activated. Executing the Google_fr_transaction transaction (in a new tab

thanks to Execute full screen button) reaches the Google main page again.

In Firebug, we can see that the response HTTP header named hasContentType is still

added to the HTML page resource, meaning that the hasContentType screen class has

matched. The already existing content-type header value is modified by the Modify

response header extraction rule:
2 - 1004 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 648: Modify response header extraction rule - Added and modified headers on Google HTML page

Example 2

The purpose of this second example is to show that a non-existing response header cannot be

modified nor added by the Modify response header extraction rule.

Let’s consider the same context and project as the first example.

On the hasContentType screen class, a Modify response header extraction rule is added in

order to modify a non-existing response header. It is created with the following parameters:

Modify response header [

header name=undefined-header

header value=convertigo

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 1005

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 649: Modify response header extraction rule - Configuration example

The extraction rule appears as follows in the Projects view:
2 - 1006 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 650: Modify response header extraction rule - Object in Projects view

Switch to a Firefox browser displaying the test platform of this project, activate Firebug

extension. Executing the Google_fr_transaction transaction (in a new tab thanks to

Execute full screen button) reaches the Google main page.

In Firebug, we can see that the response HTTP header named hasContentType is added to

the HTML page resource, meaning that the hasContentType screen class has matched. The

non-existing undefined-header header has not been modified nor added by the Modify

response header extraction rule:
2 - 1007

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 651: Modify response header extraction rule - Header added on Google HTML page

The Modify response header extraction rule doesn’t change the value nor add non-existing

headers. If you want to add a non-existing header to a resource, use an Add response header

extraction rule instead. For more information about this extraction rule, see "Add response

header" extraction rule documentation and examples.
2 - 1008 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
REMOVE RESPONSE HEADER

OBJECT DESCRIPTION

Removes an HTTP header from a Site Clipper response.

The Remove response header extraction rule removes an existing header from a response.

The name of the header to remove is defined by the Header name property.

If the header defined in the Header name property doesn't exist in the response, the Remove

response header extraction rule has no effect.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the french version of the Google website.

 Figure 2 - 652: Remove response header extraction rule - French version of Google website

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Header name String configuration Defines the header name.
This property allows to define the name of the
header to add to/modify in/remove from the
request or the response which headers are
manipulated.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 1009

Chapter "Convertigo Objects"
SiteClipper
In the context of a Site Clipper connector, we would like to clip the entire site and dynamically

remove a response header on HTML resources that are accessed through Convertigo.

A transaction, named Google_fr_transaction, is defined as default transaction for the

Site Clipper connector named GoogleResponseHeaders. It defines the URL http://

www.google.fr as target URL to connect to Google France search page.

A screen classes hierarchy is defined thanks to criteria and contains default extraction rules to

identify and handle accessed data and resources. A screen class, named

Google_Html_Page, is defined thanks to a response MIME type criterion to handle HTML

resources.

Finally, a screen class, named hasContentType, is defined as inherited from previous one,

using a Response header criterion parametered to detect content-type header, regardless

of its value. On this screen class, an Add response header extraction rule is added in order to

add a new response header named hasContentType to be sure the screen class has been

detected.

Before adding the new extraction rule, let’s switch to a Firefox browser displaying the test

platform of this project, with the Firebug extension activated. Executing the

Google_fr_transaction transaction (in a new tab thanks to Execute full screen button)

reaches the Google main page.

In Firebug, we can see that the response HTTP header named hasContentType is added to

the HTML page resource, meaning that the hasContentType screen class has matched. The

existing content-type header is appearing with the "text/html;charset=UTF-8" value:
2 - 1010 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 653: Remove response header extraction rule - Added header and original content-type header on Google
HTML page

On the hasContentType screen class, a Remove response header extraction rule is added

in order to remove the content-type response header.

The rule is created with the following parameters:

Remove response header [

header name=content-type

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 1011

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 654: Remove response header extraction rule - Configuration example

The extraction rules appear as follows in the Projects view:
2 - 1012 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 655: Remove response header extraction rule - Objects in Projects view

Switch back to Firefox browser displaying the test platform of this project, with Firebug

extension activated. Executing the Google_fr_transaction transaction (in a new tab

thanks to Execute full screen button) reaches the Google main page again.

In Firebug, we can see that the response HTTP header named hasContentType is still

added to the HTML page resource, meaning that the hasContentType screen class has

matched. The content-type header is not appearing anymore, it has been removed by the

Remove response header extraction rule:
2 - 1013

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 656: Remove response header extraction rule - Added and removed headers on Google HTML page
2 - 1014 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
REPLACE STRING

OBJECT DESCRIPTION

Makes string replacements in a Site Clipper response.

The Replace string extraction rule replaces, in a Site Clipper response, string occurrences

matching the regular expression defined in Regular expression property.

The corresponding strings from the response are replaced by the value defined in the

Replacement property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Regular expression String configuration Defines the regular expression defining text to be
replaced.
This property allows defining a regular
expression as a string pattern to find in the Site
Clipper response.
Notes:
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

Replacement String configuration Defines the replacement string to apply.
This property defines the string that will be set in
the place of each string occurrence matching the
regular expression in the Site Clipper response.
Note:
• This property can refer to groups, which is a

standard notion of regular expressions. For
more information about regular expressions
groups and symbols to use in replacement
strings, see the following pages: http://
www.regular-expressions.info/
refadv.html and http://
www.regular-expressions.info/
refreplace.html.

• This property can use available variables
automatically containing Convertigo server
paths. For more information about
Convertigo paths variables, see Appendix
"Convertigo paths variables - Usable
symbols".
2 - 1015

Chapter "Convertigo Objects"
SiteClipper
EXAMPLES

Example 1

Let’s consider the french version of the Google website.

 Figure 2 - 657: Replace string extraction rule - French version of Google website

In the context of a Site Clipper connector, we would like to clip the entire site and dynamically

change the "France" text under the Google logo on the Google main page by "Convertigo".

A transaction, named Google_fr_transaction, is defined as default transaction for the

Site Clipper connector named GoogleConnector. It defines the URL http://

www.google.fr as target URL to connect to Google France search page.

A screen classes hierarchy is defined thanks to criteria and contains default extraction rules to

identify and handle accessed data and resources.

A screen class, named Google_Html_Page, is defined thanks to a response MIME type

criterion to handle HTML resources. On this screen class, a Replace string extraction rule is

added in order to replace the text.

The rule is created with the following parameters:

Replace string [

regular expression=(<div.*>)(France)(</div>)

replacement=$1Convertigo$3

]

These parameters are edited in the Properties view of the Convertigo Studio:
2 - 1016 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 658: Replace string extraction rule - Configuration example

The Regular expression property is set to a regular expression using groups searching for:

 a first group containing a DIV opening tag possibly with attributes,

 a second group containing the word "France",

 a third group containing the DIV closing tag.

The groups can then be referenced in the Replacement string.This allows recopying the

matching strings, i.e. the DIV opening tag with its unknown attributes and the DIV closing tag,

replacing only the second group by the new "Convertigo" string.

The extraction rule appears as follows in the Projects view:
2 - 1017

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 659: Replace string extraction rule - Object in Projects view

Switch to a browser displaying the test platform of this project. Executing the

Google_fr_transaction transaction (in a new tab thanks to Execute full screen button)

reaches the Google main page. When this page is loaded, the page’s display is changed

thanks to the added rule:
2 - 1018 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 660: Replace string extraction rule - "France" text replaced by "Convertigo" on Google main page

Example 2

When you create a new Site Clipper project in Convertigo studio, its default connector is

created with:

 a default transaction, named Default_transaction, for which you may modify the

Target URL property value in the creation wizard,

 a default root screen class, named Default_screen_class, including predefined

inherited screen classes to start using and developing a Site Clipper project.

This architecture should be suitable in most cases.

The root screen class defines a Rewrite location header rule to process any request of

redirection and an additional Rewrite absolute url rule to rewrite URLs found in the HTTP

response returned by the server. For more information, see the "Rewrite location header" and

"Rewrite absolute URL" documentations and examples.

One of the screen classes inherited from the Default_screen_class screen class, named

Javascript, includes an additional Replace string extraction rule in order to process every

necessary string replacements in URLs found in JavaScript resources. Indeed, the Rewrite

absolute url extraction rule only processes these replacements in HTML and CSS resources.

The rule is created with the following parameters:

Replace string [

regular expression=(["']http[s]?)://
2 - 1019

Chapter "Convertigo Objects"
SiteClipper
replacement=$siteclipper_host$/$1/

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 661: Replace string extraction rule - Configuration example

The Regular expression property is set to a regular expression set in two parts:

 a first group searchs for the beginning of an URL ("http" or "https"), starting with a

quote or double-quote,

 then, the "://" characters are described by the second part of the regular expression, not

part of a group.

The group can then be referenced in the Replacement string, using the $1 syntax.This allows

recopying the matching string, i.e. the http or https URL beginning with the quote or double-

quote first character.

The Replacement string also includes a Convertigo path variable, identified by the

$siteclipper_host$ syntax. This adds the Site Clipper path in Convertigo server to the

rewritten URL. For more information about Convertigo paths variables, see Appendix

"Convertigo paths variables - Usable Symbols".

The extraction rule appears as follows in the Projects view:
2 - 1020 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 662: Replace string extraction rule - Object in Projects view
2 - 1021

Chapter "Convertigo Objects"
SiteClipper
SCRIPT INJECTOR

OBJECT DESCRIPTION

Injects script code into a Site Clipper response.

The Script injector extraction rule inserts a <script></script> element into the received

response.

The location where to insert the element is defined by the Injection location property which

may be customized using the Custom regexp property.

The script's source code is contained in an external file which path is defined in the File path

property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Custom regexp String selection Defines the regular expression to use for a
custom injection location.
When Injection location property value is set to
custom, the Custom regexp property allows
defining a regular expression to specify the
custom location where to insert the HTML
element, rather than using the predefined values.
Notes:
• This expression must contains () to specify

where to insert the code.
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

File path String configuration Defines the external file path used for the source
attribute of the inserted HTML tag.
This property allows specifying the path to an
external file which contains the source code.
The path value must be relative to the current
project folder.
2 - 1022 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
EXAMPLES

Let’s consider the french version of the Google website.

 Figure 2 - 663: Script injector extraction rule - French version of Google website

In the context of a Site Clipper connector, we would like to clip the entire site and dynamically

pop-up an alert when the Google main page is loaded.

A transaction, named Google_fr_transaction, is defined as default transaction for the

Site Clipper connector named GoogleConnector. It defines the URL http://

www.google.fr as target URL to connect to Google France search page.

A screen classes hierarchy is defined thanks to criteria and contains default extraction rules to

identify and handle accessed data and resources.

A screen class, named Google_Html_Page, is defined thanks to a response MIME type

criterion to handle HTML resources. On this screen class, a Script injector extraction rule is

Injection location HtmlLocation configuration Defines the location where to insert the element.
This property allows choosing where the new
HTML element has to be inserted into the
received response.
Predefined values are:
• head_top: inserts after the opening

<HEAD> tag,
• head_bottom: inserts before the closing </

HEAD> tag,
• body_top: inserts after the opening

<BODY> tag,
• body_bottom: inserts before the closing </

BODY> tag,
• custom: inserts at a custom location defined

by the Custom regexp property.

Is active boolean configuration Defines whether the extraction rule is active.

Property Type Category Description
2 - 1023

Chapter "Convertigo Objects"
SiteClipper
added in order to pop-up an alert box.

The rule is created with the following parameters:

Script injector [

file path=js/alert.js

injection location=head_top

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 664: Script injector extraction rule - Configuration example

The Injection location property is set to head_top to add the following code after the

begining of the HEAD tag in the HTML response:

<script src="js/alert.js"></script>

The scr attribute is filled with the value of the File path property.

The extraction rule appears as follows in the Projects view:
2 - 1024 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 665: Script injector extraction rule - Object in Projects view

For this example to be functionnal, we have to create the JavasScript source file that is injected

by the rule.

Creating the JavaScript file

The js/alert.js file is defined by the Script injector rule to be the source of the code to

inject. An alert.js file is created under the js directory of the project:
2 - 1025

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 666: Script injector extraction rule - Creating alert.js file on project’s js folder

As we want to pop-up an alert when the Google main page is loaded, thus we add the following

code: alert("Test a script injector");

This code is edited in the Convertigo Studio:

 Figure 2 - 667: Script injector extraction rule - Editing alert.js file

Now all configuration is finished, switch to the browser displaying the test platform of this

project. Executing the Site Clipper Google_fr_transaction transaction reaches the

Google main page. When this page is loaded, the page’s display is changed thanks to the

added rule:
2 - 1026 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 668: Script injector extraction rule - Pop-up displayed thanks to JavaScript code injected

 Figure 2 - 669: Script injector extraction rule - Zoom on the pop-up
2 - 1027

Chapter "Convertigo Objects"
SiteClipper
CSS INJECTOR

OBJECT DESCRIPTION

Injects style sheet code into a Site Clipper response.

The CSS injector extraction rule inserts a <link /> element into the received response.

The location where to insert the element is defined by the Injection location property which

may be customized using the Custom regexp property.

The style sheet's source code is contained in an external file which path is defined in the File

path property.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Custom regexp String selection Defines the regular expression to use for a
custom injection location.
When Injection location property value is set to
custom, the Custom regexp property allows
defining a regular expression to specify the
custom location where to insert the HTML
element, rather than using the predefined values.
Notes:
• This expression must contains () to specify

where to insert the code.
• For more information about regular

expression patterns, see the following page:
http://www.regular-
expressions.info/reference.html.

• To test regular expressions, you can use the
regular expression tester at the following
URL: http://www.regular-
expressions.info/
javascriptexample.html.

File path String configuration Defines the external file path used for the source
attribute of the inserted HTML tag.
This property allows specifying the path to an
external file which contains the source code.
The path value must be relative to the current
project folder.
2 - 1028 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
EXAMPLES

Let’s consider the french version of the Google website.

 Figure 2 - 670: CSS injector extraction rule - French version of Google website

In the context of a Site Clipper connector, we would like to clip the entire site and dynamically

change the background color of the center area when the Google main page is loaded.

A transaction, named Google_fr_transaction, is defined as default transaction for the

Site Clipper connector named GoogleConnector. It defines the URL http://

www.google.fr as target URL to connect to Google France search page.

A screen classes hierarchy is defined thanks to criteria and contains default extraction rules to

identify and handle accessed data and resources.

A screen class, named Google_Html_Page, is defined thanks to a response MIME type

criterion to handle HTML resources. On this screen class, a CSS injector extraction rule is

Injection location HtmlLocation configuration Defines the location where to insert the element.
This property allows choosing where the new
HTML element has to be inserted into the
received response.
Predefined values are:
• head_top: inserts after the opening

<HEAD> tag,
• head_bottom: inserts before the closing </

HEAD> tag,
• body_top: inserts after the opening

<BODY> tag,
• body_bottom: inserts before the closing </

BODY> tag,
• custom: inserts at a custom location defined

by the Custom regexp property.

Is active boolean configuration Defines whether the extraction rule is active.

Property Type Category Description
2 - 1029

Chapter "Convertigo Objects"
SiteClipper
added in order to change the main area background color.

The rule is created with the following parameters:

CSS injector [

file path=css/bluebg.css

injection location=head_bottom

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 671: CSS injector extraction rule - Configuration example

The Injection location property is set to head_bottom to add the following code before the

end of the HEAD tag in the HTML response:

<link type="text/css" rel="stylesheet" href="css/bluebg.css"/>

The href attribute is filled with the value of the File path property.

The extraction rule appears as follows in the Projects view:
2 - 1030 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 672: CSS injector extraction rule - Object in Projects view

For this example to be functionnal, we have to create the CSS source file that is injected by

the rule.

Creating the CSS file

The css/bluebg.css file is defined by the CSS injector rule to be the source of the code to

inject. A bluebg.css file is created under the css directory of the project:
2 - 1031

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 673: CSS injector extraction rule - Creating bluebg.css file on project’s css folder

The area we are interested in is defined by a DIV HTML element with an id attribute which

value is main (<div id="main">...</div>). Thus we add the following code to modify

this DIV’s background color:

#main {

background-color: blue;

}

This code is edited in the Convertigo Studio:

 Figure 2 - 674: CSS injector extraction rule - Editing bluebg.css file

Now all configuration is finished, switch to the browser displaying the test platform of this

project. Executing the Site Clipper Google_fr_transaction transaction (in a new tab

thanks to Execute full screen button) reaches the Google main page. When this page is

loaded, the page’s display is changed thanks to the added rule:
2 - 1032 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 675: CSS injector extraction rule - Blue background added thanks to CSS code injected
2 - 1033

Chapter "Convertigo Objects"
SiteClipper
REWRITE LOCATION HEADER

OBJECT DESCRIPTION

Rewrites the "Location" header value of a Site Clipper response.

The Rewrite location header extraction rule rewrites the "Location" header value of a Site

Clipper response.

This response header is mostly used to redirect the recipient to a location other than the

requested one for completion of the request or identification of a new resource. The extraction

rule rewrites this URL in order to access the new location through Convertigo Site Clipper.

The Rewrite location header extraction rule's behavior depends on the type of URL found in

the header. If the URI specified by the location's value is absolute, two cases are possible:

 if the URI doesn't match a black listed domain defined in Site Clipper connector, the

header value is automatically rewritten,

 else, the header value remains unchanged.

If the URI specified by the location's value is relative, it is automatically rewritten.

Note: If applicable, location's URI is rewritten to an absolute value so that next client's request

for the given resource is correctly handled by Convertigo.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the following page from the US version of Google website (www.google.com).

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 1034 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 676: Rewrite location header extraction rule - US version of Google website

When you access this website with your favorite browser, you're automatically redirected to

another address, for example www.google.fr if you're located in France.

This redirection is transparent to you because it is fully supported by your browser.

The information is sent by the server located at www.google.com in reply to your request

through an HTTP header (Content-Location or Location).

 Figure 2 - 677: Rewrite location header extraction rule - French version of Google website

In the context of a Site Clipper connector, we would like to automatically rewrite the targeted

location's URL so that redirection request is processed by Convertigo rather than the targeted
2 - 1035

Chapter "Convertigo Objects"
SiteClipper
server.

A transaction, named Google_com_transaction, is created in the Site Clipper connector

named Google_com_Connector. It defines the URL http://www.google.com as target

URL to connecto to Google search page.

Switch to a browser displaying the test platform of this project. Executing the

Google_com_transaction transaction (in a new tab thanks to Execute full screen button)

reaches the Google.com page. When the automatic redirect to Google France is performed,

the page is accessed directly. You can see the URL http://www.google.fr/ directly

reached in the browser:

 Figure 2 - 678: Rewrite location header extraction rule - Redirect to Google France reached directly

In the Site Clipper connector, a root screen class, named Google, is defined thanks to a

request URL criterion to handle Google ressources only. On this screen class, a Rewrite

location header extraction rule is added in order to automatically rewrite target URL of

redirects.

A Rewrite location header extraction rule has no properties to configure:

Rewrite location header [

]

It appears as follows in the Properties view of the Convertigo Studio:
2 - 1036 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 679: Rewrite location header extraction rule - Configuration example

The extraction rule appears as follows in the Projects view:

 Figure 2 - 680: Rewrite location header extraction rule - Object in Projects view

Switch back to the browser displaying the test platform of this project. Executing the

Google_com_transaction transaction again (in a new tab thanks to Execute full screen

button) reaches the Google.com page. When the automatic redirect to Google France is

performed, the page is accessed through Convertigo. You can see the URL starting by the

Convertigo server URL http://localhost:18080/convertigo/ reached in the browser:
2 - 1037

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 681: Rewrite location header extraction rule - Redirect to Google France through Convertigo
2 - 1038 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
REWRITE ABSOLUTE URL

OBJECT DESCRIPTION

Rewrites absolute URLs found in a Site Clipper response.

The Rewrite absolute URL extraction rule rewrites absolute URLs found in Site Clipper HTTP

responses, for the links or resources accessed by these URLs to be accessed through

Convertigo Site Clipper.

This extraction rule will be executed only on HTTP responses that match certain MIME types:

 If Rewrite HTML code property value is set to true, URLs found in HTML code are

rewritten. That means the extraction rule is searching for URLs to rewrite in HTTP

responses of text/html or application/xhtml+xml MIME types.

 If Rewrite CSS code property value is set to true, URLs found in CSS code are

rewritten. That means the extraction rule is searching for URLs to rewrite in HTTP

responses of text/css, text/html or application/xhtml+xml MIME types.

Notes:

 Absolute URLs are rewritten only if they don't match a black listed domain defined in the

Domains listing property of the associated Site Clipper connector.

 If applicable, relative URLs are rewritten to absolute ones.

 URLs found in JavaScript code will not be rewritten by this rule. To do so, use a Replace

string extraction rule parametered for your specific case.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.

Rewrite CSS code boolean configuration Automatically rewrite absolute URLs in CSS
code.
This property allows to specify whether absolute
URLs found in the CSS code of a Site Clipper
response should be rewritten or not. Specifically
to this rule, CSS code of a Site Clipper response
is defined by an HTTP response of the following
MIME types:
• text/css: Cascading Style Sheet text

resource,
• text/html: HTML text resource,
• application/xhtml+xml: XHTML file

resource.
If this property is set to true, URLs specified in
following CSS keyword are rewritten:
• url keyword.
2 - 1039

Chapter "Convertigo Objects"
SiteClipper
EXAMPLES

Let’s consider the french version of the Google website.

 Figure 2 - 682: Rewrite absolute URL extraction rule - French version of Google website

In the context of a Site Clipper connector, we would like to clip the entire site and dynamically

access all resources and pages from Google website through Convertigo.

A transaction, named Google_fr_transaction, is created in the Site Clipper connector

named Google_com_Connector. It defines the URL http://www.google.fr as target

URL to connect to Google France search page.

Rewrite HTML code boolean configuration Automatically rewrite absolute URLs in HTML
code.
This property allows to specify whether absolute
URLs found in the HTML code of a Site Clipper
response should be rewritten or not. Specifically
to this rule, HTML code of a Site Clipper
response is defined by an HTTP response of the
following MIME types:
• text/html: HTML text resource,
• application/xhtml+xml: XHTML file

resource.
If this property is set to true, URLs specified in
following HTML attributes are rewritten:
• action attribute,
• background attribute,
• cite attribute,
• classid attribute,
• codebase attribute,
• data attribute,
• href attribute,
• longdesc attribute,
• profile attribute,
• src attribute,
• usemap attribute.

Property Type Category Description
2 - 1040 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
Switch to a browser displaying the test platform of this project. Executing the

Google_fr_transaction transaction (in a new tab thanks to Execute full screen button)

reaches the Google.fr page through Convertigo:

 Figure 2 - 683: Rewrite absolute URL extraction rule - Google France accessed through Convertigo

Rolling the mouse over the top left links (Images, Maps, etc.) shows links reaching directly

Google website (http://maps.google.fr/..., http://news.google.fr/..., etc.):

 Figure 2 - 684: Rewrite absolute URL extraction rule - Links not reaching Convertigo

In the Site Clipper connector, a root screen class, named Google, is defined thanks to a

request URL criterion to handle Google ressources. On this screen class, a Rewrite absolute
2 - 1041

Chapter "Convertigo Objects"
SiteClipper
URL extraction rule is added in order to automatically rewrite target URL of every link and

resources.

The rule is created with the following parameters:

Rewrite absolute URL [

rewrite CSS code=true

rewrite HTML code=true

]

It appears as follows in the Properties view of the Convertigo Studio:

 Figure 2 - 685: Rewrite absolute URL extraction rule - Configuration example

The Rewrite CSS code and Rewrite HTML code properties are set to true for URLs included

in HTML code and in CSS code to be rewritten. This leads to access all linked resources

through Convertigo.

Only JavaScript code cannot be automatically rewritten by this rule: each case is specific to

the target website. To access resources linked in JavaScript code through Convertigo, you can

add a String replace extraction rule and manually configure the corresponding case.

The extraction rule appears as follows in the Projects view:
2 - 1042 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 686: Rewrite absolute URL extraction rule - Object in Projects view

Switch back to the browser displaying the test platform of this project. Executing the

Google_fr_transaction transaction again (in a new tab thanks to Execute full screen

button) reaches the Google.fr page through Convertigo.

Rolling the mouse over the top left links (Images, Maps, etc.) shows links accessing Google

resources through Convertigo (URL starting with http://localhost:18080/

convertigo/...):

 Figure 2 - 687: Rewrite absolute URL extraction rule - Accessing Google resources through Convertigo
2 - 1043

Chapter "Convertigo Objects"
SiteClipper
CLIENT INSTRUCTION SET VALUE

OBJECT DESCRIPTION

Automatically sets a value in a target element from a web page accessed through Convertigo

Site Clipper. The action is performed in the client browser after the page is loaded.

The Client instruction set value extraction rule stores an instruction of setting a value in an

element in a queue of client instructions. This queue is then unstacked when the page is client-

side loaded. The instruction of setting a value in a target element is performed on the page

when it is loaded by the client browser.

The target element (input field or text area) is defined thanks to the JQuery selector property

and the value to enter in the field is defined by the Value property. These properties are

JavaScript expressions, evaluated by Convertigo when the extraction rule is applied.

In order to process the unstacking of client instructions in the web page, client

instruction engine code is injected into the page after all response extraction rules are

applied. When the page is client-side loaded, the client instruction engine runs and

consumes each registered client instruction, in the same order as extraction rules.

Consuming the Client instruction set value instruction, the engine selects the target element

using the JQuery selector and sets the value attribute with the value computed by the rule

using the Value property.

Note: The value is set using the JQuery val function. For more information about this function,

see the following page: http://api.jquery.com/val/.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 1044 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
EXAMPLES

Let’s consider the US directory White Pages website, US directory pages to search for people.

This search form needs a last name and may need a first name, a city, a state and some other

optional fields:

JQuery selector JS expression configuration JavaScript expression defining a JQuery selector
matching the target element from the HTML
document.
This property defines a JQuery selector used to
retrieve the target element (input field, text area,
select, checkbox, radio button, etc.) on the client
browser when the page is loaded. It is defined
thanks to a JavaScript expression evaluated
using the JavaScript scope of the current context.
It should return a string to be used as a JQuery
selector.
Here are some default syntaxes for JQuery
selectors.
An id selector starts with # character, an attribute
selector is between [] characters, a class
selector starts with . character.
The > character separating several selectors
defines a constraint to the direct ancestor. The
space character separating several selectors
defines a constraint to any ancestor.
The followings are some simple selectors that
can be used in JQuery:
• Select an element by id:

#the_id_to_search,
• Select an any type of element by name:

[name="the_name_to_search"] or also
*[name="the_name_to_search"],

• Select an input element by name:
input[name="the_name_of_the_input
_to_search"],

• Select an any type of element by class:
.class_to_search,

• Select a div element by class:
div.class_of_a_div_to_search,

• Select an input by name, direct child of a
form element selected by class:
form.form_class >
input[name="input_name"],

• Select an hidden input, descendant of a
specified id: #specified_id
input[type="hidden"].

Note: The full JQuery selector documentation is
available on the official JQuery website: http:/
/api.jquery.com/category/selectors/.

Value JS expression configuration JavaScript expression defining the string value to
set in the target element.
This property defines the value to be entered in
the target element. It is defined thanks to a
JavaScript expression evaluated using the
JavaScript scope of the current context. It should
return a string to be used as a text value.
The target element should be:
• an INPUT element of text, hidden or

password type,
• a SELECT element,
• a TEXTAREA element.

Property Type Category Description
2 - 1045

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 688: Client instruction set value extraction rule - Whites pages on US directory website

An HTML transaction, named SearchWhitePages, is created to navigate in the US directory

website to access the White Pages search page. This transaction gives the control back to the

user on this form page through a Site Clipper connector, thanks to a Continue with Site Clipper

statement.

This transaction defines several variables, such as first_name, last_name and state

(and possibly other variables), corresponding to the interesting fields of the previous page’s

form. When invoked, the HTML transaction creates a new Convertigo context and sets its

variables values into its JavaScript scope.

When the user gets the control back through the Site Clipper connector, we want the search

form to be prefilled with the values declared in the previous HTML transaction variables.

In the Site Clipper connector, named USdirectory, a screen classes hierarchy is defined

thanks to criteria and contains default extraction rules to identify and handle accessed data and

resources. A Person screen class is defined to match on the previous web page.

In order to fill each input field of the form, Client instruction set value rules are created on the

Person screen class, one per field.

 For text type inputs, rules are created with the following parameters:
2 - 1046 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
Client instruction set value [

jQuery selector="input[name=’firstname’]"

value=first_name

]

Client instruction set value [

jQuery selector="input[name=’lastname’]"

value=last_name

]

 For select combo box, the rule is created with the following parameters:

Client instruction set value [

jQuery selector="select[name=’state_id’]"

value=state

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 689: Client instruction set value extraction rule - Configuration example for text type input
2 - 1047

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 690: Client instruction set value extraction rule - Configuration example for select

The JQuery selector properties are defined to select input or select element by their name

attribute. The Value properties are set to JavaScript expressions using the values of the

corresponding variables available in the Site Clipper context JavaScript scope because they

were set in the scope by the HTML transaction which received them as input.

The extraction rules appear as follows in the Projects view:
2 - 1048 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 691: Client instruction set value extraction rule - Objects in Projects view

Switch to a browser displaying the test platform of this project. Executing the

SearchWhitePages transaction (in a new tab thanks to Execute full screen button) with

custom values for defined variables:

 reaches the form page,

 gives back the control on the page through the Site Clipper,
2 - 1049

Chapter "Convertigo Objects"
SiteClipper
 and automatically fills the input fields and selects value in combo box using variables

custom values:

 Figure 2 - 692: Client instruction set value extraction rule - Automatically filled inputs and combo box
2 - 1050 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
CLIENT INSTRUCTION SET CHECKED

OBJECT DESCRIPTION

Automatically checks a target element from a web page accessed through Convertigo Site

Clipper. The action is performed in the client browser after the page is loaded.

The Client instruction set checked extraction rule stores an instruction of checking/unchecking

an element in a queue of client instructions. This queue is then unstacked when the page is

client-side loaded. The instruction of checking/unchecking an element is performed on the

page when it is loaded by the client browser.

The target element (checkbox or radio button) is defined thanks to the JQuery selector

property and the state to which change the element is defined by the Checked state property.

These properties are JavaScript expressions, evaluated by Convertigo when the extraction

rule is applied.

In order to process the unstacking of client instructions in the web page, client

instruction engine code is injected into the page after all response extraction rules are

applied. When the page is client-side loaded, the client instruction engine runs and

consumes each registered client instruction, in the same order as extraction rules.

Consuming the Client instruction set checked instruction, the engine selects the target element

using the JQuery selector and depending on the Checked state property value:

 sets the attribute checked="checked" on the target element, if the Checked state

evaluation is true,

 removes the checked attribute from the target element otherwise.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Checked state JS expression configuration JavaScript expression defining the boolean value
used to change the target element state.
This property defines the checked state to set on
the target element. It is defined thanks to a
JavaScript expression evaluated using the
JavaScript scope of the current context. It should
return a boolean to be used as follows:
• true for checked state,
• false for unchecked state.
The target element should be an INPUT element
of checkbox or radio type.

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 1051

Chapter "Convertigo Objects"
SiteClipper
EXAMPLES

Let’s consider the US directory White Pages website, US directory pages to search for people.

This search form needs a last name and may need a first name, a city, a state and some other

optional fields:

JQuery selector JS expression configuration JavaScript expression defining a JQuery selector
matching the target element from the HTML
document.
This property defines a JQuery selector used to
retrieve the target element (input field, text area,
select, checkbox, radio button, etc.) on the client
browser when the page is loaded. It is defined
thanks to a JavaScript expression evaluated
using the JavaScript scope of the current context.
It should return a string to be used as a JQuery
selector.
Here are some default syntaxes for JQuery
selectors.
An id selector starts with # character, an attribute
selector is between [] characters, a class
selector starts with . character.
The > character separating several selectors
defines a constraint to the direct ancestor. The
space character separating several selectors
defines a constraint to any ancestor.
The followings are some simple selectors that
can be used in JQuery:
• Select an element by id:

#the_id_to_search,
• Select an any type of element by name:

[name="the_name_to_search"] or also
*[name="the_name_to_search"],

• Select an input element by name:
input[name="the_name_of_the_input
_to_search"],

• Select an any type of element by class:
.class_to_search,

• Select a div element by class:
div.class_of_a_div_to_search,

• Select an input by name, direct child of a
form element selected by class:
form.form_class >
input[name="input_name"],

• Select an hidden input, descendant of a
specified id: #specified_id
input[type="hidden"].

Note: The full JQuery selector documentation is
available on the official JQuery website: http:/
/api.jquery.com/category/selectors/.

Property Type Category Description
2 - 1052 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 693: Client instruction set checked extraction rule - Whites pages on US directory website

An HTML transaction, named SearchWhitePages, is created to navigate in the US directory

website to access the White Pages search page. This transaction gives the control back to the

user on this form page through a Site Clipper connector, thanks to a Continue with Site Clipper

statement.

This transaction defines several variables, such as first_name, last_name and state,

corresponding to the interesting fields of the previous page’s form, including one variable

named extended_area. When invoked, the HTML transaction creates a new Convertigo

context and sets its variables values into its JavaScript scope.

When the user gets the control back through the Site Clipper connector, we want the search

form to be prefilled with the values declared in the previous HTML transaction variables, and

the "Include surrounding area" checkbox to be checked (or not) depending on the

extended_area variable value.

In the Site Clipper connector, named USdirectory, a screen classes hierarchy is defined

thanks to criteria and contains default extraction rules to identify and handle accessed data and

resources. A Person screen class is defined to match on the previous web page, it contains

several extraction rules to fill all form inputs.
2 - 1053

Chapter "Convertigo Objects"
SiteClipper
To check/uncheck the "Include surrounding area" checkbox of the form, a Client instruction

set checked rule is created on the Person screen class with the following parameters:

Client instruction set checked [

jQuery selector="input[name=’metro_area’]"

checked state= extended_area=="true"

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 694: Client instruction set checked extraction rule - Configuration example

The JQuery selector is defined to select an input element by its name attribute. The

Checked state property is set to a JavaScript expression testing the value of the

extended_area variable available in the Site Clipper context JavaScript scope because it

was set in the scope by the HTML transaction which received it as input.

The extraction rule appears as follows in the Projects view:
2 - 1054 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 695: Client instruction set checked extraction rule - Object in Projects view

Switch to a browser displaying the test platform of this project. Executing the

SearchWhitePages transaction (in a new tab thanks to Execute full screen button) with

custom values for defined variables:

 reaches the form page,

 gives back the control on the page through the Site Clipper,
2 - 1055

Chapter "Convertigo Objects"
SiteClipper
 automatically fills the input fields using variables custom values,

 and checks or unchecks the checkbox using extended_area variable custom value.

With the extended_area variable value set to "true", the checkbox is automatically

checked:

 Figure 2 - 696: Client instruction set checked extraction rule - Automatically checked checkbox
2 - 1056 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
CLIENT INSTRUCTION CLICK

OBJECT DESCRIPTION

Automatically clicks on a target element from a web page accessed through Convertigo Site

Clipper. The action is performed in the client browser after the page is loaded.

The Client instruction click extraction rule stores an instruction of clicking on an element in a

queue of client instructions. This queue is then unstacked when the page is client-side loaded.

The instruction of clicking on an element is performed on the page when it is loaded by the

client browser.

The target element is defined thanks to the JQuery selector property. This property is a

JavaScript expression, evaluated by Convertigo when the extraction rule is applied.

In order to process the unstacking of client instructions in the web page, client

instruction engine code is injected into the page after all response extraction rules are

applied. When the page is client-side loaded, the client instruction engine runs and

consumes each registered client instruction, in the same order as extraction rules.

Consuming the Client instruction click instruction, the engine selects the target element using

the JQuery selector and clicks on it.

Note: The click is perfomed using the JQuery click function. For more information about this

function, see the following page: http://api.jquery.com/click/.

OBJECT PROPERTIES

The table below describes the object properties:

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 1057

Chapter "Convertigo Objects"
SiteClipper
EXAMPLES

Let’s consider the US directory White Pages website, US directory pages to search for people.

This search form needs a last name and may need a first name, a city, a state and some other

optional fields:

JQuery selector JS expression configuration JavaScript expression defining a JQuery selector
matching the target element from the HTML
document.
This property defines a JQuery selector used to
retrieve the target element (input field, text area,
select, checkbox, radio button, etc.) on the client
browser when the page is loaded. It is defined
thanks to a JavaScript expression evaluated
using the JavaScript scope of the current context.
It should return a string to be used as a JQuery
selector.
Here are some default syntaxes for JQuery
selectors.
An id selector starts with # character, an attribute
selector is between [] characters, a class
selector starts with . character.
The > character separating several selectors
defines a constraint to the direct ancestor. The
space character separating several selectors
defines a constraint to any ancestor.
The followings are some simple selectors that
can be used in JQuery:
• Select an element by id:

#the_id_to_search,
• Select an any type of element by name:

[name="the_name_to_search"] or also
*[name="the_name_to_search"],

• Select an input element by name:
input[name="the_name_of_the_input
_to_search"],

• Select an any type of element by class:
.class_to_search,

• Select a div element by class:
div.class_of_a_div_to_search,

• Select an input by name, direct child of a
form element selected by class:
form.form_class >
input[name="input_name"],

• Select an hidden input, descendant of a
specified id: #specified_id
input[type="hidden"].

Note: The full JQuery selector documentation is
available on the official JQuery website: http:/
/api.jquery.com/category/selectors/.

Property Type Category Description
2 - 1058 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 697: Client instruction click extraction rule - Whites pages on US directory website

An HTML transaction, named SearchWhitePages, is created to navigate in the US directory

website to access the White Pages search page. This transaction gives the control back to the

user through a Site Clipper connector, thanks to a Continue with Site Clipper statement.

This transaction defines several variables, such as first_name, last_name and state,

corresponding to the interesting fields of the previous page’s form, and including one variable

named auto. When invoked, the HTML transaction creates a new Convertigo context and sets

its variables values into its JavaScript scope.

When the user gets the control back through the Site Clipper connector, we want the search

form to be prefilled with the values declared in the previous HTML transaction variables, and

possibly automatically validated, depending on the auto variable value.

In the Site Clipper connector, named USdirectory, a screen classes hierarchy is defined

thanks to criteria and contains default extraction rules to identify and handle accessed data and

resources. A Person screen class is defined to match on the previous web page, it contains

several extraction rules to fill all form inputs.

To validate the form, a Client instruction click rule is created on the Person screen class with

the following parameters:
2 - 1059

Chapter "Convertigo Objects"
SiteClipper
Client instruction click [

jQuery selector=

(auto=="true")?"input.button[value='Search']":"void"

]

These parameters are edited in the Properties view of the Convertigo Studio:

 Figure 2 - 698: Client instruction click extraction rule - Configuration example

The JQuery selector is defined thanks to a JavaScript expression testing the value of the

auto variable, to select an input button element by its name attribute when the auto

variable is "true", or nothing ("void") otherwise. The auto variable is available in the Site

Clipper context JavaScript scope because it was set in the scope by the HTML transaction

which received it as input.

The extraction rule appears as follows in the Projects view:
2 - 1060 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 699: Client instruction click extraction rule - Object in Projects view

Switch to a browser displaying the test platform of this project. Executing the

SearchWhitePages transaction (in a new tab thanks to Execute full screen button) with

custom values for defined variables:

 reaches the form page,

 gives back the control on the page through the Site Clipper,
2 - 1061

Chapter "Convertigo Objects"
SiteClipper
 automatically fills the input fields and checks the checkbox using variables custom values,

 and validates the form by clicking on the Search button or not using auto variable custom

value.

With the auto variable value set to "true", the form is automatically validated:

 Figure 2 - 700: Client instruction click extraction rule - Automatically validated form
2 - 1062 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
REMOVE RESPONSE CACHE HEADERS

OBJECT DESCRIPTION

Removes HTTP cache-related headers from a Site Clipper response.

The Remove request cache headers extraction rule removes existing cache-related headers

from a response. The following headers are removed:

 Last-Modified,

 Cache-Control,

 ETag.

OBJECT PROPERTIES

The table below describes the object properties:

EXAMPLES

Let’s consider the Convertigo website.

Property Type Category Description

Comment String configuration Describes the object comment to include in the
documentation report.
This property generally contains an explanation
about the object.

Is active boolean configuration Defines whether the extraction rule is active.
2 - 1063

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 701: Remove response cache headers extraction rule - Convertigo website

Before proceeding with the example, let’s activate the Firebug extension of Firefox browser.

Observing the response HTTP headers of the convertigo_home_banner.swf resource,

i.e. the Flash animated banner of the welcome page, we can see the cache-related headers

named Last-Modified and Cache-Control are present:
2 - 1064 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 702: Remove response cache headers extraction rule - Cache-related headers present on Flash resource
HTTP response

In the context of a Site Clipper connector, we would like to clip the entire site and dynamically

remove the cache-related headers of Flash resources accessed through Convertigo.

A transaction, named GoTo_Convertigo, is defined as default transaction for the Site

Clipper connector named ConvertigoWebSiteConnector. It defines the URL http://

www.convertigo.com as target URL to connect to Convertigo website.

A screen classes hierarchy is defined thanks to criteria and contains default extraction rules to

identify and handle accessed data and resources. Two screen classes are defined in order to

handle Convertigo website pages and more precisely HTML resources from this website.

Finnaly, a screen class, named FlashResources, is defined thanks to a response MIME type
2 - 1065

Chapter "Convertigo Objects"
SiteClipper
criterion to handle shockwave-flash resources. On this screen class, an Add response header

extraction rule is added in order to add a new response header named convertigoFlash to

be sure the screen class has been detected.

On the FlashResources screen class, a Remove response cache headers extraction rule is

added in order to remove the cache-related response headers. The rule has no parameters to

configure:

Remove response cache headers [

]

This extraction rule appears as follows in the Properties view of the Convertigo Studio:

 Figure 2 - 703: Remove response cache headers extraction rule - Configuration example

The extraction rules appear as follows in the Projects view:
2 - 1066 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 704: Remove response cache headers extraction rule - Object in Projects view

Switch back to Firefox browser, display the test platform of this project with the Firebug

extension activated. Executing the GoTo_Convertigo transaction (in a new tab thanks to

Execute full screen button) reaches the Convertigo website welcome page.

In Firebug, we can see that the response HTTP header named convertigoFlash is added

to the Flash resource, meaning that the FlashResources screen class has matched. The

Cache-Control and Last-Modified headers are not appearing anymore, they were

removed by the Remove response cache headers extraction rule:
2 - 1067

Chapter "Convertigo Objects"
SiteClipper
 Figure 2 - 705: Remove response cache headers extraction rule - Added and removed headers on Convertigo Flash
banner resource
2 - 1068 Reference Manual - CEMS 7.2.0

3 JavaScript Objects APIs

This chapter offers information about JavaScript objects available in Convertigo transactions

or sequences.

 Javelin object javadoc

 Context object
3 - 1

Chapter "JavaScript Objects APIs"
Javelin object javadoc
3.1 Javelin object javadoc

Javelin is the object representing the legacy screen. Actions can be defined and performed on

the legacy screen by programming code using the Javelin object. This section contains the API

documentation of the Javelin object.

 Fields detailed list

 Methods detailed list

3.1.1 Fields detailed list

This section presents the list of fields contained in Javelin object, with their description.

Table 3 - 1: Fields list

Type Field name Description

static char AT_AUTO_ENTER Mask for DRCS (downloadable font) attribute bit: 0x8000 (0100
0000 0000 0000).
Note: relevant for Videotex only. For 3270 and 5250 this bit
indicates an AUTO_TAB flag for the field.

static char AT_AUTO_TAB Mask for double height: 0x0040 (0000 0000 0100 0000).
For 32370/5250 also indicates field is AUTO_ENTER.

static char AT_BLINK Mask for blink attribute bit: 0x1000 (0001 0000 0000 0000).

static char AT_BOLD Mask for bold attribute bit: 0x0800 (0000 0100 0000 0000).

static int AT_COLOR_BLACK

static int AT_COLOR_BLUE

static int AT_COLOR_CYAN

static int AT_COLOR_GREEN

static int AT_COLOR_MAGENT
A

static int AT_COLOR_RED

static int AT_COLOR_WHITE

static int AT_COLOR_YELLOW

static char AT_DOUBLEHEIGHT Mask for double height: 0x0040 (0000 0000 0100 0000). For
32370/5250 also indicate field is AUTO_ENTER.

static char AT_DOUBLEWIDTH Mask for double width attribute bit: 0x0080 (0000 0000 1000
0000).

static char AT_DRCS Mask for DRCS (downloadable font) attribute bit: 0x8000 (0100
0000 0000 0000).
Note: relevant for Videotex only. For 3270 and 5250 this bit
indicates an AUTO_TAB flag for the field.

static int AT_FIELD_ATTRIBUT
E

static int AT_FIELD_HIDDEN Mask for hidden field attribute: 0x0C0000.
Note: relevant for IBM 3270 / 5250 and BULL DKU7xxx only.

static int AT_FIELD_HIGH_INTE
NSITY

Mask for high intensity field attribute: 0x040000.
Note: relevant for IBM 3270 / 5250 and BULL DKU7xxx only.
3 - 2 Reference Manual - CEMS 7.2.0

Chapter "JavaScript Objects APIs"
Javelin object javadoc
3.1.2 Methods detailed list

This section presents the list of methods contained in Javelin object, with their description and

parameters.

static int AT_FIELD_MODIFIED Mask for modified field attribute: 0x010000.
Note: relevant for IBM 3270 / 5250 and BULL DKU7xxx only.

static int AT_FIELD_NUMERIC Mask for numeric field attribute: 0x100000.
Note: relevant for IBM 3270 / 5250 and BULL DKU7xxx only.

static int AT_FIELD_PEN_SELE
CTABLE

Mask for pen selectable field attribute: 0x080000.
Note: relevant for IBM 3270 / 5250 and BULL DKU7xxx only.

static int AT_FIELD_PROTECTE
D

Mask for protected Field attribute bit: 0x200000.
Note: relevant for IBM 3270 / 5250 and BULL DKU7xxx only.

static int AT_FIELD_RESERVED Mask for reserved field attribute: 0x020000.
Note: relevant for IBM 3270 / 5250 and BULL DKU7xxx only.

static char AT_HIDDEN Mask for hidden attribute bit: 0x8000 (1000 0000 0000 0000).

static char AT_INK Mask for INK attribute: 0x0007 (0000 0000 0000 0111).

static char AT_INVERT Mask for inverse attribute bit: 0x0200 (0000 0001 0000 0000).

static char AT_MASKED Mask for masked attribute bit: 0x2000 (0010 0000 0000 0000).
Note: relevant for VT220 only.

static char AT_NPTUI Mask for NPTUI attribute bit: 0x2000 (0010 0000 0000 0000).
Note: relevant for 5250 only.

static char AT_PAPER Mask for PAPER attribute: 0x0038 (0000 0000 0011 1000).

static char AT_PROTECTED Mask for protected attribute bit: 0x4000 (0100 0000 0000 0000).
For 5250 reprsent also the NPTUI attribute.

static char AT_UNDERLINE Mask for underline attribute bit: 0x0100 (0000 0001 0000 0000).

static char AT_UPHALF Mask for double height upper row attribute bit: 0x0400 (0000 0100
0000 0000).
Note: relevant for VT220 only.

static
java.lang.String

AS400 Defines an IBM 5250 (AS/400) session.

static
java.lang.String

DKU Defines a Bull DKU session.

static
java.lang.String

SNA Defines an IBM 3270 (SNA) session.

static
java.lang.String

TN5250 Defines a Twinsoft 5250 (AS/400) session.

static
java.lang.String

VDX Defines a videotex session.

static
java.lang.String

VT Defines a VT220 session.

Table 3 - 1: Fields list (...)

Type Field name Description
3 - 3

Chapter "JavaScript Objects APIs"
Javelin object javadoc
Table 3 - 2: Methods list

Return
Type

Method signature Description

void addKeyListener(java.awt.event.KeyListener l)
Parameters:
l - the component interested by the events.

Registers a client on the keyListener.
KeyListener delivers events for keystokes on
Javelin.

void addZoneListener(com.twinsoft.twinj.zoneList
ener l)
Parameters:
l - the component interested by the events.

Registers a client on the zoneListener.
ZoneListener delivers events for selection
changes.

void clearTrigger() Remove all arrived trigger from the MsgQueue.

void connect()
See also: connect(int), disconnect()

Connects Javelin to a server. The connection is
asynchronous. When the connection is made, the
Connected event is thrown by Javelin.
The connection is made with the parameters
provided by helper functions such as
setDteAddress(), setCommDevice(),
setServiceCode()...

boolean connect(int timeout)
Parameters:
timeout - the maximum amount of
milliseconds during which the connection is
expected.
Returns: true if connected, false if the
timeout expired.
See also: connect(), disconnect()

Connects synchronously Javelin to a server.
The connection is made with the parameters
provided by helper functions such as
setDteAddress(), setCommDevice(),
setServiceCode()...

void deleteWaitAts()
See also: waitAt(String, int, int, long),
waitAtId(int, String, int, int), waitForId(int,
String), waitFor(String, long), deleteWaitFors()

Deletes all triggers set by the waitAt() method.

void deleteWaitFors()
See also: waitAt(String, int, int, long),
waitAtId(int, String, int, int), waitForId(int,
String), waitFor(String, long), deleteWaitAts()

Deletes all triggers set by the waitFor() method.

void disconnect()
See also: connect(), connect(int)

Disconnects Javelin from the current connected
server.
The disconnection is synchronous, i.e. Javelin is
disconnected when the method returns.

void doAction(java.lang.String action)
Parameters:
action - the action to execute, see Appendix
"Legacy emulator actions table".

Executes an action on the emulator.

char getChar(int column, int line)
Parameters:
column - the horizontal coordinate from left to
right beginning by 0.
line - the vertical coordinate from top to
bottom beginning by 0.
Returns: the read character at (column,
line) coordinates.
See also: getCharAttribute(int, int),
getString(int, int, int), setChar(int, int, char)

Returns the ASCII code of the character at
coordinates (column, line).
3 - 4 Reference Manual - CEMS 7.2.0

Chapter "JavaScript Objects APIs"
Javelin object javadoc
int getCharAttribute(int column, int line)
Parameters:
column - the horizontal coordinate from left to
right beginning by 0.
line - the vertical coordinate from top to
bottom beginning by 0.
Returns: the character attribute at (column,
line) coordinates.
See also: getChar(int, int), getString(int, int,
int), setChar(int, int, char)

Returns the character attribute at coordinates
(column, line).
You can access specific attribute bit with AT_xxx
masks.

int getCurrentColumn()
Returns: the current column.
See also: getCurrentLine()

Returns the current column of the caret.
Columns are designed from top to bottom and
beginning by 0.

int getCurrentLine()
Returns: the current line.
See also: getCurrentColumn()

Returns the current line of the caret.
Lines are designed from left to right and beginning
by 0.

boolean getDataStableOnCursorOn()
Returns: the DataStableOnCursorOn.

Retrieves the DataStableOnCursorOn flag. This
flag controls how the data stable condition is
detected.
For Videotex emulators. if true, this condition is
met when a Videotex cursor is shown by the host.

int getDataStableThreshold()
Returns: the dataStableThreshold value.

Gets the dataStableThreshold value.

int getFieldAttribute(int fieldIndex)
Parameters:
fieldIndex - the index or the field from 0 to
n.
Returns: the attribute of the field.

Gets the attribute of a given field.

int getFieldColumn(int fieldIndex)
Parameters:
fieldIndex - the index or the field from 0 to
n.
Returns: the column of the field.

Gets the column of a given field.

int getFieldLength(int fieldIndex)
Parameters:
fieldIndex - the index or the field from 0 to
n.
Returns: the length of the field.

Gets the lenght of a given field.
If the lenght is greater than the width of the screen,
it means that the field spans on several lines.

int getFieldLine(int fieldIndex)
Parameters:
fieldIndex - the index or the field from 0 to
n.
Returns: the line of the field.

Gets the line of a given field.

java.lan
g.String

getFieldText(int fieldIndex)
Parameters:
fieldIndex - the index or the field from 0 to
n.
Returns: the text of the field.

Gets the text of a given field.

int getNumberOfFields()
Returns: the number of fields.

Gets the number of fields on the screen.
If the number of fields is 0, then the screen is called
"unformatted". This is always the case for VT and
VDX emulators but can be the case for IBM in the
case of a unformatted screen.

Table 3 - 2: Methods list (...)

Return
Type

Method signature Description
3 - 5

Chapter "JavaScript Objects APIs"
Javelin object javadoc
int getScreenHeight()
Returns: the number of lines.
See also: getScreenWidth()

Gets the number of lines of the current emulator
screen.

int getScreenWidth()
Returns: the number of columns.
See also: getScreenHeight()

Gets the number of columns of the current emulator
screen.

java.aw
t.Recta
ngle

getSelectionZone()
Returns: zone - the rectangle that holds the
zone (x = column 0 based, y = line 0 based,
width = width of the selection in chars, height =
height of the selection in chars)

Gets the current selection zone on Javelin.

java.lan
g.String

getString(int column, int line, int length)
Parameters:
column - the horizontal coordinate from left to
right beginning by 0.
line - the vertical coordinate from top to
bottom beginning by 0.
lenght - the string length to return.
Returns: the read string at (column, line)
coordinates.
See also: getChar(int, int),
getCharAttribute(int, int), setChar(int, int, char)

Returns the string at coordinates (column, line).

java.lan
g.String

getTerminalClass()
Returns: the terminal class.

Retrieves the terminal class of the Javelin object.

boolean isConnected()
Returns: true if connected, false
otherwise.
See also: connect(), connect(int), disconnect()

Retrieves the Javelin connection state.

void moveCursor(int column, int line)
Parameters:
column - the horizontal coordinate from left to
right beginning by 0.
line - the vertical coordinate from top to
bottom beginning by 0.

Moves the cursor to coordinates (column, line).

boolean printBuffer(java.lang.String printerPort,
java.lang.String buffer)
Parameters:
printerPort - the printer port.
buffer - the buffer to be printed.
Returns: true if ok, false otherwise.

Writes a string on a given printer port.

This port can be any string containing LPTx or a
network printer specification as
\\SERVER\PRINTER or a file as print.txt.

The specified port will be opened, then the buffer
will be written to it and the port will be closed in this
sequence. If the port is null, then the port will be

the default port specified as RawPrinter in the
applet.

void removeAllZoneListeners() Unregisters all clients on the zoneListener.
ZoneListener delivers events for selection
changes.

void removeKeyListener(java.awt.event.KeyListe
ner l)
Parameters:
l - the component not anymore interested by
the events.

Unregisters a client on the keyListener.
KeyListener delivers events for keystokes on
Javelin.

Table 3 - 2: Methods list (...)

Return
Type

Method signature Description
3 - 6 Reference Manual - CEMS 7.2.0

Chapter "JavaScript Objects APIs"
Javelin object javadoc
void removeZoneListener(com.twinsoft.twinj.zone
Listener l)
Parameters:
l - the component not anymore interested by
the events.

Unregisters a client on the zoneListener.
ZoneListener delivers events for selection
changes.

void send(java.lang.String keystrokes)
Parameters:
keystrokes - the string to send.

Sends a string as if the user has stroken it on
keyboard. All characters between 0x00 and 0xFF
can be sent by this way.

void setAutoConnect(boolean bAutoConnect)
Parameters:
bAutoConnect - indicates if automatic
connection should be performed without
having to call one of the connect() methods.

Sets the auto connect flag.

void setChar(int column, int line, char c)
Parameters:
column - the horizontal coordinate from left to
right beginning by 0.
line - the vertical coordinate from top to
bottom beginning by 0.
c - the ASCII character code to set.
See also: getChar(int, int),
getCharAttribute(int, int), getString(int, int, int),

Sets the ASCII code of the character at coordinates
(column, line).

void setClientConfig(java.util.Properties p)
Parameters:
p - the properties ti set in the emulator.

Sets the current terminal properties. The properties
depends on the emulator technology. Only the 3270
and 5250 emulators support this api.

void setClientConfig(java.lang.String
configuration)
Parameters:
configuration - the new configuration; this
is a string of the form
param1=value1¶m2=value2&; ...
¶mN=valueN.
NB: each valuei should be in UTF8 format.

Sets a new configuration for Javelin.

void setCommDevice(java.lang.String
commDevice)
Parameters:
commDevice - the communication device.

Sets the communication device, i.e. the address (IP
or DNS) of the PAVI gateway, eventually followed
by :port.

void setDataStableOnCursorOn(boolean bool)
Parameters:
bool - the DataStableOnCursorOn flag.

Sets the DataStableOnCursorOn flag.

void setDataStableThreshold(int val)
Parameters:
val - the dataStableThreshold value.

Sets the dataStableThreshold value. This
value is the maximum time allowed with no data
received from the host to consider a dataStable
condition.

void setDoCapture(boolean bDoCapture)
Parameters:
bDoCapture - indicates if capture should be
written or not.

Sets the capture flag.

Table 3 - 2: Methods list (...)

Return
Type

Method signature Description
3 - 7

Chapter "JavaScript Objects APIs"
Javelin object javadoc
void setDteAddress(java.lang.String
connectionString)
Parameters:
connectionString - the connection string
using the following format:
<path>#<destination>-<source sub
address>.<destination sub
address>/<max level>.

Sets the connection string.

This method is ineffective for 5250 and 3270
emulators.

For a direct telnet connection (mandatory for IBM and Bull emulators):
• path = DIR
• destination = <IP address>:<port>
To connect to a PAVI + Eicon X25 board (there is no "-" character between destination and
sourceSA in this case only):
• path = EIC
• destination = <Iremote X25 address>
• source sub address = called sub-address (for Intelmatique billings)
• destination sub address = calling sub-address (for services filter selection)
• max level = 0..255
To connect to a PAVI + SAP/IP:
• path = TCP
• destination = <Intelmatique address>@port
• source sub address = called sub-address (for Intelmatique billings)
• destination sub address = calling sub-address (for services filter selection)
• max level = 0..255
To connect to a PAVI + iMinitel (same as DIR but using the PAVI as a gateway ; iMinitel address:
172.31.0.20@7516):
• path = MIP
• destination = <iMinitel address>@port
• max level = 0..255
To connect to a PAVI + iMinitel + RAS (using a modem or ISDN service ; iMinitel address:
172.31.0.20@7516):
• path = RAS
• destination = <iMinitel address>@port
• max level = 0..255

void setGroup(java.lang.String group)
Parameters:
group - the user group.

Sets the group of the user.

void setLogOutputStream(java.io.OutputStream
outputStream)
Parameters:
outputStream - the output stream for traces.

Defines the output stream for traces.

void setSelectionZone(java.awt.Rectangle zone)
Parameters:
zone - the rectangle that holds the zone (x =
column 0 based, y = line 0 based, width =
width of the selection in chars, height = height
of the selection in chars)

Sets a selection zone on Javelin. This will result as
if the user had selected the zone with the mouse.
After this api is called, the user will be able to
modify the selection zone.

void setServiceCode(java.lang.String
serviceCode)
Parameters:
serviceCode - the service code using the
following format:
• VT: n/a,
• Bull: mailbox,
• Videotex: service code,
• IBM: device name.

Sets the service code (depending of the terminal
class).

Table 3 - 2: Methods list (...)

Return
Type

Method signature Description
3 - 8 Reference Manual - CEMS 7.2.0

Chapter "JavaScript Objects APIs"
Javelin object javadoc
void setVicUser(java.lang.String vicUser)
Parameters:
vicUser - the user name.

Sets the name of the user.

void showZones(java.util.Vector rv, java.util.Vector
cv)
Parameters:
rv - the vector containing the zones
rectangles. If rv is null, the zones will not be
shown anymore.
cv - the vector containing the color of each
zone.

Shows Zones on the emulator screen. The zones
will be represented as rectangles bounding
characters. This feature can be used to enhance or
to show a grid system on the emulator screen.
Zones are described in a vector of rectangles in
character 0 based coordinates.
For example, Rectangle (0, 0, 10, 1);
will describe a zone in column 0, line 0, of 10 chars.

void Trace(java.lang.Exception e)
Parameters:
e - the exception to log.

Writes an exception in the emulator log output
stream.

void Trace(int level, java.lang.String message)
Parameters:
level - the log level to use.
message - the message to write.

Writes a message in the emulator log output stream
with a given log level.

void Trace(java.lang.String message)
Parameters:
message - the message to write.

Writes a message in the emulator log output
stream.

boolean waitAt(java.lang.String searchedString, int
column, int line, long timeOut)
Parameters:
searchedString - the string to be searched.
column - the horizontal coordinate of the
trigger.
line - the vertical coordinate of the trigger.
timeout - the maximum amount of
milliseconds during which the wait is made.
Returns: true if the event is fired, false
otherwise.
See also: waitAtId(int, String, int, int),
waitForId(int, String), waitFor(String, long),
deleteWaitAts(), deleteWaitFors()

Sets up a synchronous screen trigger.

This method returns only when the string
searchedString is recognized on the screen at

coordinates (column, line).

void waitAtId(int id, java.lang.String
searchedString, int column, int line)
Parameters:
id - the trigger id. This ID is transmitted by the
WaitAtDone event.
searchedString - the string to be searched.
column - the horizontal coordinate of the
trigger.
line - the vertical coordinate of the trigger.
See also: waitAt(String, int, int, long),
waitForId(int, String), waitFor(String, long),
deleteWaitAts(), deleteWaitFors()

Sets up an asynchronous screen trigger.
When the string searchedString is recognized
on the screen at (column, line) coordinates, the
WaitAtDone event is generated by the applet with
the identificator id.
You can set many observations at the same time.
Once the event is generated, the observation is
freed.

Table 3 - 2: Methods list (...)

Return
Type

Method signature Description
3 - 9

Chapter "JavaScript Objects APIs"
Javelin object javadoc
boolean waitCursorAt(int column, int line, boolean
here, long timeout)
Parameters:
column - the horizontal coordinate of the
cursor.
line - the vertical coordinate of the cursor.
here - if true, the function waits for the
cursor to be at the specified position. if false,
the function waits for the cursor to be at any
position different from the one specified.
timeout - the maximum amount of
milliseconds to wait.
Returns: true if the cursor is found at this
position before timeout, false otherwise.
See also: waitAtId(int, int, int, boolean)

Waits synchronoulsy for the cursor to be at a
specified position. This function is useful to detect a
new page coming in Videotex and VTxxx
emulators.

void waitCursorAtId(int Id, int column, int line,
boolean here)
Parameters:
id - the trigger id. This ID is received in the
WaitAtDone event or in the WaitTrigger()
function.
column - the horizontal coordinate of the
cursor.
line - the vertical coordinate of the cursor.
here - if true, the function waits for the
cursor to be at the specified position. if false,
the function waits for the cursor to be at any
position different from the one specified.

Waits Asynchronoulsy for the cursor to be at a
specified position.This function is useful to detect a
new page coming in Videotex and VTxxx
emulators.

boolean waitFor(java.lang.String searchedString, long
timeout)
Parameters:
searchedString - the string to be searched.
timeout - the maximum amount of
milliseconds during which the search is
performed.
Returns: true if the string is found before
timeout, false otherwise.
See also: waitAt(String, int, int, long),
waitAtId(int, String, int, int), waitForId(int,
String), deleteWaitAts(), deleteWaitFors()

Set up a synchrounous line trigger.

boolean waitForDataStable(int timeout, int
dataStableThreshold)
Parameters:
timeout - the maximum amount of
milliseconds during which the event is
expected.
dataStableThreshold - this value is the
maximum time allowed with no data received
from the host to consider a dataStable
condition.
Returns: true if the screen is stable, false
otherwise.

Waits for the screen to be stable.
This routine will return after timeout, even if the
screen isn't still stable.

void waitForId(int id, java.lang.String Str)
Parameters:
id - the trigger id. This ID is received in the
WaitAtDone event or in the WaitTrigger()
function.
str - the string to be observed.
See also: waitAt(String, int, int, long),
waitAtId(int, String, int, int), waitFor(String,
long), deleteWaitAts(), deleteWaitFors()

Set up a screen trigger. When the string Str is
recognized in the data stream the event id will be
generated. You can set many Triggers at the same
time.
Once the event is generated, the Trigger is freed.
You can wait for these triggers with the
WaitTrigger() function.

Table 3 - 2: Methods list (...)

Return
Type

Method signature Description
3 - 10 Reference Manual - CEMS 7.2.0

Chapter "JavaScript Objects APIs"
Javelin object javadoc
void waitSync(int timeOut)
Parameters:
timeout - the maximum amount of
milliseconds during which the wait will occur.

Calls the Javelin wait() method.

int waitTrigger(long timeout)
Parameters:
timeout - the maximum amount of
milliseconds during which the event is
expected.
Returns: -1 if the timeout has expired,
otherwise the trigger ID.
See also: waitAt(String, int, int, long),
waitAtId(int, String, int, int), waitForId(int,
String), deleteWaitAts(), deleteWaitFors()

Waits for a trigger that has been set by one of the
waitAt() or waitFor() functions.

Table 3 - 2: Methods list (...)

Return
Type

Method signature Description
3 - 11

Chapter "JavaScript Objects APIs"
Context object
3.2 Context object

Context is the object representing the context of execution of transactions or sequences. This

section presents the context, how it works in Convertigo, and then contains the API

documentation of the Context object.

 Context general presentation

 Context API documentation

3.2.1 Context general presentation

This section presents the Convertigo context:

 Definition

 Identification

 Context object

DEFINITION

Each time a request is sent to Convertigo, a context is created in the Convertigo Server engine.

A context is a kind of dedicated environment and specific tunnel between the client and the

Convertigo Server. It contains all the relevant information required to process the request: a

copy of the requested project and all its necessary objects, the transaction or sequence

execution scopes, cookies, variables... If a context already exists and is available, it can also

be re-used, depending on conditions that are explained thereafter.

IDENTIFICATION

A Convertigo context is identified by a contextId, based on the session ID.

The standard template for generating the contextId is: <JSESSIONID>_<contextName>.

Let’s detail these two parts of the contextId:

 JSESSIONID: It is the HTTP session ID, identifier of the user session (like JSESSIONID in

Tomcat). All requests made by the same client have to be done using the same HTTP

session in order to keep using the same context.

Session ID contains a reference to the informations of the session. This
ID is transferred by the client browser, so that the application can link the
HTTP request and the associated user session together. This transfer is
made using browser cookies.
3 - 12 Reference Manual - CEMS 7.2.0

Chapter "JavaScript Objects APIs"
Context object
 contextName: The context name differentiates several contexts created for the same

HTTP session. By default, contextName value is “default”, corresponding to only one

Convertigo context for a given HTTP session. When no context name is specified by the

request, this default context name is always used and re-used. It is not the case in the

following situations:

 Unlike the HTTP session ID, which is fixed by the server at the first connection from a

client, the context name can be chosen by the client and sent as a request parameter:

__context=XXXX. Therefore, consecutive requests must use not only the same

HTTP session but also the same context name to re-use the same execution context.

 In the case of a transaction or sequence initiated by a sequence, through a Call

Transaction or a Call Sequence step (not initiated directly by a client), the context

name is automatically generated, and can also be specified in the call step.

CONTEXT OBJECT

The Convertigo developer has access to the execution context of a transaction or a sequence

directly in this transaction or sequence, simply by using the context object. This object is usable

in JavaScript code (in transaction’s core for a Legacy transaction, in a Transaction JS

statement for an HTML transaction, in a Sequence JS step for a sequence, etc).

The context object can be useful to store data, for example variables, XML chunks, etc. and

retrieve this data in another request execution during the same session, as well as to encode

and decode data.

But the context object is also a useful tool to control some behaviors of the running transaction

or sequence, like the cache storage or pool locking, or to add elements to the output XML, etc.

See the complete API of the object on the section “Context API documentation” on page 3 - 13.

3.2.2 Context API documentation

The followng sections present the fields and methods of the Context object that are usable in

transactions and sequences JavaScript code.

 Fields detailed list

 Methods detailed list

 Interesting methods in Context fields

Be aware that different clients can have different behavior in terms
of session management. For example:
Two different instances of Internet Explorer open two different
HTTP sessions. But if you use the New Window menu function from
IE, then the spawned window will retain its parent sessions.
When requesting the same server, Firefox tabs create different
HTTP sessions, but Internet Explorer Tabs will only use one.
As for web services clients, like Microsoft .NET, or Java Axis, they
most of the time use a specific parameter to retain sessions
between succesive calls to a server.
3 - 13

Chapter "JavaScript Objects APIs"
Context object
FIELDS DETAILED LIST

This section presents the list of fields contained in Context object, with their description.

Table 3 - 3: Context fields list

Field name Type Description

contextID String The context unique identifier.

contextNum int The context number (it is incremented by 1 for each newly
created context).

creationTime long The context creation time (as a timestamp).

httpServletRequest HttpServletRequest The HTTP servlet request object, when the transaction/
sequence currently executed is called externally, through
HTTP, by the client.
When called through internal invoke (for Call Transaction/
Call Sequence steps), the HTTP servlet request object is
spread from parent sequences/parent context throughout the
sequences hierarchy.

httpSession HttpSession The HTTP session object.

inputDocument Document The input XML document generated by the requester.

isCacheEnabled boolean Indicates whether the cache functionnality is enabled.
Default value is true, you can set this parameter to false
during the transaction/sequence execution in order not to store
the XML response in the cache (for example, in case of error,
the response should not be stored).

lastAccessTime long The last access time to this context.

lockPooledContext boolean Indicates whether the context is to be kept in the pool even if it
is not in the expected state (i.e. wrong screen class).
Usually, a pooled context is automatically destroyed after a
transaction execution if it is left on a wrong screen class (not
the stable state screen class for this context). This property
enables keeping this context alive in the pool for a further use.

outputDocument Document The output XML document generated by the current
transaction.

parentContext Context The context of parent sequence, if the currently executed
transaction/sequence has a parent sequence, i.e. if the current
transaction/sequence is executed through a Call Transaction/
Call Sequence step from another sequence (called parent
sequence).
Otherwise, this property is null.

remoteAddr String The remote address from the calling client.

remoteHost String The name of the calling client (if reverse DNS has been
enabled).

requireEndOfContext boolean Indicates whether the context is to be destroyed after the
transaction handling.
By default set to false, a context is re-usable. This property
can be set to true if the context needs to be destroyed after a
transaction execution.

servletPath String The servlet path for the current request.

steps Vector<String> The steps objects, useful for asynchronous transaction.
These are the asynchronous mode steps objects, not to be
confused with Steps of Sequences.

tasCommDevice String The TAS (VIC or Carioca) communication device for
establishing the connection.
3 - 14 Reference Manual - CEMS 7.2.0

Chapter "JavaScript Objects APIs"
Context object
METHODS DETAILED LIST

This section presents the list of methods contained in Context object, with their description and

parameters.

tasDteAddress String The TAS (VIC or Carioca) remote address for connection.

tasServiceCode String The TAS (VIC or Carioca) service code.

tasSessionKey String The TAS (VIC or Carioca) session key.

tasUserGroup String The TAS (VIC or Carioca) user group.

tasUserName String The TAS (VIC or Carioca) user name.

tasUserPassword String The TAS (VIC or Carioca) user password.

tasVirtualServerName String The TAS (VIC or Carioca) virtual server name.

userAgent String The user agent from the calling client.

Table 3 - 4: Context methods list

Return
Type

Method signature Description

void abortRequestable() Requests the end of the transaction/sequence
running in the current context as soon as possible
and without any condition.

Node addTextNode(Node parentNode, String
tagName, String text)
Parameters:
parentNode - the parent node into which the
new node should be inserted
tagName - the new node tag name
text - the new node text content
Returns: the created node

Adds a new node containing text in the output XML
document, under an identified parent node.

Node addTextNodeUnderBlock(String tagName,
String text)
Parameters:
tagName - the new node tag name
text - the new node text content
Returns: the created node

Adds a new node containing text in the output XML
document, under the blocks node (in the context
of a Legacy transaction).

Node addTextNodeUnderRoot (String tagName,
String text)
Parameters:
tagName - the new node tag name
text - the new node text content
Returns: the created node

Adds a new node containing text in the output XML
document, under the root node (document
element).

String decodeFromHexString(String s)
Parameters:
s - the string to decrypt; this string must have
been encoded by the
encodeToHexString() function in order to
stay meaningfull.
Returns: the decrypted string or null if any
error occurs.
See also: encodeToHexString(String),
encodeToHexString(String, String)

Decrypts a string using the triple DES algorithm
and the Convertigo default passphrase.

Table 3 - 3: Context fields list (...)

Field name Type Description
3 - 15

Chapter "JavaScript Objects APIs"
Context object
String decodeFromHexString(String passphrase,
String s)
Parameters:
passphrase - the ciphering passphrase to
use for decoding.
s - the string to decrypt; this string must have
been encoded by the
encodeToHexString() function in order to
stay meaningfull.
Returns: the decrypted string or null if any
error occurs.
See also: encodeToHexString(String),
encodeToHexString(String, String)

Decrypts a string using the triple DES algorithm
and the passphrase passed as parameter.

String encodeToHexString(String s)
Parameters:
s - the string to encrypt.
Returns: the encrypted string; the script is of
hexadecimal string format, i.e. it contains only
hexadecimal (printable) characters, or null if
any error occurs.
See also: decodeFromHexString(String),
decodeFromHexString(String, String)

Encrypts a string using the triple DES algorithm and
the Convertigo default passphrase.

String encodeToHexString(String passphrase,
String s)
Parameters:
passphrase - the ciphering passphrase to
use for encoding.
s - the string to encrypt.
Returns: the encrypted string; the script is of
hexadecimal string format, i.e. it contains only
hexadecimal (printable) characters, or null if
any error occurs.
See also: decodeFromHexString(String),
decodeFromHexString(String, String)

Encrypts a string using the triple DES algorithm and
the passphrase passed as parameter.

Object get(String key)
Parameters:
key - the key identifying the requested object.
Returns: the object bound with the key in the
context, or null if no object is bound with this
key in the context.
See also: keys(), set(String, Object),
remove(String)

Gets the object bound with the specified key in the
context, or null if no object is bound with this key
in the context..

String getAbsoluteRequestedUrl()
Returns: the absolute requested URL.
See also: getConvertigoUrl(), getProjectUrl()

Gets the absolute URL of currently executed
request.

String getAuthenticatedUser()
Returns: the authenticated user ID from the
context/session, or null if the context/session
is not authenticated.
See also: setAuthenticatedUser(String),
removeAuthenticatedUser()

Gets the authenticated user ID from the context/
session, if the context/session is authenticated.
Otherwise, returns null.

String getConvertigoUrl()
Returns: the absolute URL to Convertigo
Server web application.
See also: getAbsoluteRequestedUrl(),
getProjectUrl()

Gets the absolute URL to Convertigo server web
application.

String getProjectDirectory()
Returns: the path to project directory.

Returns the path to the current project directory.

Table 3 - 4: Context methods list (...)

Return
Type

Method signature Description
3 - 16 Reference Manual - CEMS 7.2.0

Chapter "JavaScript Objects APIs"
Context object
String getProjectName()
Returns: the project name.

Returns the name of the current project.

String getProjectUrl()
Returns: the absolute URL to the project root.
See also: getAbsoluteRequestedUrl(),
getConvertigoUrl()

Gets the absolute URL of the current project root.

Context getRootContext()
Returns: the context of initial parent
sequence, i.e. the sequence that is called
externally, through HTTP, by the client.
See also: parentContext

Gets the context object of the sequence called by
the client, the first sequence called in currently
executed sequences hierarchy.
This can be the current context when no call
hierarchy is executed, i.e. when the current context
is the context of a transaction/sequence called
directly by the client.

Object getTransactionProperty(String
propertyName)
Parameters:
propertyName - the name of the property to
retreive.
Returns: the property value; depending on the
property this value may be an object .

Retrieves the value of a property of the current
transaction.

boolean isSOAPRequest()
Returns: true if the request is a SOAP
request (i.e. if the request path ends by .ws or
.wsl), otherwise returns false.

Says if the request that initiated the transaction/
sequence is a SOAP request or not.

Set<Stri
ng>

keys()
Returns: the collection of keys identifying
objects stored in the context.
See also: get(String), set(String, Object),
remove(String)

Returns the collection of keys identifying objects
stored in the context.

Properti
es

loadPropertiesFromProject(String fileName)
Parameters:
fileName - the name of the properties file to
load.
Returns: the loaded properties.

Load properties from a file located in current project
folder.

Properti
es

loadPropertiesFromWebInf(String fileName)
Parameters:
fileName - the name of the properties file to
load.
Returns: the loaded properties.

Load properties from a file located in WEB-INF
folder.

void remove(String key)
Parameters:
key - the key identifying the object to remove.
See also: get(String), keys(), set(String,
Object)

Removes the object bound with the requested key
from the context.

void removeAuthenticatedUser()
See also: getAuthenticatedUser(),
setAuthenticatedUser(String)

Removes the authenticated user ID from the
context/session. The context/session is not
authenticated anymore.

boolean savePropertiesToProject(String fileName,
Properties properties)
Parameters:
fileName - the name of the file to save
properties.
properties - the properties to save.
Returns: true if the save succeeds.

Saves properties in a properties file in current
project folder

Table 3 - 4: Context methods list (...)

Return
Type

Method signature Description
3 - 17

Chapter "JavaScript Objects APIs"
Context object
INTERESTING METHODS IN CONTEXT FIELDS

Some fields of Context object are themselves objects, containing interesting methods to use

in Convertigo transactions and sequences JavaScript code. The following list present these

objects methods, with their description and parameters.

boolean savePropertiesToWebInf(String fileName,
Properties properties)
Parameters:
fileName - the name of the file to save
properties.
properties - the properties to save.
Returns: true if the save succeeds.

Saves properties in a properties file in WEB-INF
folder.

void set(String key, Object value)
Parameters:
key - the key identifying the object.
value - the object to bind with the key.
See also: get(String), keys(), remove(String)

Stores an object identified by a key into the context.

void setAuthenticatedUser(String userID)
Parameters:
userID - the user ID that has to be positioned
in context/session as authenticated user.
See also: getAuthenticatedUser(),
removeAuthenticatedUser()

Sets the context/session as authenticated and
stores the userID as the authenticated user ID.

boolean waitAtScreenClass(int timeout, int hardDelay)
Parameters:
timeout - the time (in ms) we have to wait for
the screen class.
hardDelay - a delay (in ms) added after the
screen class has arrived.
Returns: true if we the screen did arrive,
false otherwise.

This method only concerns Minitel projects.
Waits for one of the screens described by the
screen classes in the project to arrive. The method
waits for all the screen classes except the current
one. You can use waitAtScreenClass()
method to synchronize your handler before
returning "redetect", "accumulate" or
"skip".

boolean waitNextPage(String action, int timeout, int
hardDelay)
Parameters:
action - the action to perform before waiting.
timeout - the time (in ms) we have to wait for
the screen class.
hardDelay - a delay (in ms) added after the
screen class has arrived.
Returns: true if we the screen did arrive,
false otherwise.

This method only concerns Minitel projects.
Waits for a new page for the same screen class or
a new screen class.
The method wait for one of the screens described
by the screen classes in the project to arrive. We
wait for all the screen classes except the current
one. In the case of a next page on the same screen
class, waitNextPage() will monitor the cursor
position. the method will return when the cursor
position returns to the same position it was before
calling waitNextPage().
You can use waitNextPage() method to
synchronize your handler before returning
"redetect", "accumulate" or "skip".

Table 3 - 5: Interesting methods in Context fields

Return
Type

Method signature Description

String context.httpServletRequest.getMethod() Returns the name of the HTTP method with which
the request to Convertigo was made.
It can be GET, POST, PUT, DELETE, HEAD.

Table 3 - 4: Context methods list (...)

Return
Type

Method signature Description
3 - 18 Reference Manual - CEMS 7.2.0

4 Interfaces to Convertigo

This chapter offers information about how to access to Convertigo projects and execute

transactions and sequences.

 HTTP protocol interface to Convertigo

 Web service interface to Convertigo
4 - 1

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
4.1 HTTP protocol interface to Convertigo

Convertigo projects contain "requestable" objects, transactions and sequences, that can be

invoked by HTTP protocol. This section describes possible URLs to access Convertigo

projects and all reserved variables usable in these URLs.

 Convertigo URLs

 Convertigo reserved parameters

4.1.1 Convertigo URLs

 General process

 Convertigo requesters

GENERAL PROCESS

The following general process describes the HTTP protocol used from the client (web browser

or application) to the Convertigo server.

1 The client issues an HTTP request to Convertigo to the following root URL:

• ConvertigoServer is the host name or IP address of your Convertigo server, with

possibly a port number.

• A local Convertigo Studio has as host name localhost and, in HTTP, 18080
as default port number, in HTTPS, 18081 as default port number.

• A Convertigo Server installed locally on your computer shares the same host
name: localhost. The Convertigo Server default port number is 28080 for
HTTP and 28443 for HTTPS.

• When installed in an existing application server, it has as IP address and ports
the IP address and ports of the application server.

• A Convertigo Cloud server is accessed through its server name, for example:
me.convertigo.net (no port to provide in this case, either for HTTP or
HTTPS).

• ConvertigoAppName defines the name of the Convertigo web application.

• A local Convertigo Studio or a Convertigo Server installed locally has
convertigo as Convertigo app name.

• A Convertigo Cloud server has cems as Convertigo app name.

• ProjectName defines the name of the project you want to invoke in Convertigo. If

the project doesn’t exist, the application server generates an error (HTTP 404 Not

Found).

• ConvertigoRequester defines the requester to use on the Convertigo server. It can

take several values that are described further (see "Convertigo requesters" on

page 4-3).

For example, with a project named test_project in a local Convertigo Studio:

http(s)://<ConvertigoServer>/<ConvertigoAppName>/projects/

<ProjectName>/<ConvertigoRequester>
4 - 2 Reference Manual - CEMS 7.2.0

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
• ConvertigoServer = localhost:18080

• ConvertigoAppName = convertigo

• ProjectName = test_project

2 This HTTP request can use the following HTTP verbs: GET, POST, PUT, DELETE, HEAD.

Convertigo would handle all these verbs the same way, by executing the called

transaction / sequence. Only HEAD verb will have a different result, see point 4 of this

procedure.

3 The root URL can be followed by a query string, possibly containing reserved variables

and variables to be passed to the invoked transaction / sequence. These variables may

also be passed in POST data.

4 Convertigo handles the request, executing the requested transaction / sequence, and

returns the response to the client.

• Depending on the invoked requester, the response can contain different documents

and formats, see "Convertigo requesters" on page 4-3.

• Depending on the HTTP verb used in the request, the response may be different:

HEAD verb will only return headers in response (following HTTP specifications).

5 The client (web browser or application) retrieves and manages the response, also

depending on the invoked requester and the project’s parametrization.

CONVERTIGO REQUESTERS

Several requesters can be invoked in Convertigo to execute a transaction / sequence. This

section explains in details the different values that can be passed in ConvertigoRequester

part of the URL.

WEBLIB REQUESTER

This requester is invoked by calling the index.html file of the project, i.e. setting the

ConvertigoRequester at the end of the URL to index.html.

For example, with a project named test_project in a local Convertigo studio, the URL to

call a transaction / sequence is:

The weblib requester automatically includes a complete JavaScript AJAX library based on

The verb can be retrieved inside JavaScript code in Convertigo
transaction / sequence using the following code line:
context.httpServletRequest.getMethod()
For more information about context object fields and methods, see
"Context object" on page 3-12.

For more information about specific parameters, see "Convertigo
reserved parameters" on page 4-6.

http://localhost:18080/convertigo/projects/test_project/index.html
4 - 3

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
JQuery that allows:

 invoking Convertigo transactions / sequences / project resources,

 managing the Convertigo responses,

 performing XSL transformation (if necessary),

 encoding request parameters,

 sequencing several calls to Convertigo,

 including in a portal the widget generated from the transaction / sequence response,

 developing interactions between widgets,

 etc.

The client requests the project’s index, its request is handled by the JavaScript library, which

performs an AJAX call to Convertigo engine and handles the response.

Some parametrization of this library framework can be performed by updating global variables

values. Lots of these variables can be parametered thanks to weblib reserved variables, that

have to be passed in the request. For more information about weblib specific parameters, see

"Weblib reserved parameters" on page 4-11.

The parametrization of the engine request, i.e. the definition of the transaction / sequence to

call, etc. is done by using engine reserved variables. For more information about engine

specific parameters, see "Engine reserved parameters" on page 4-7.

XML REQUESTERS

These requesters are invoked by setting the ConvertigoRequester at the end of the URL to

the following expression: <PoolName>.<Extension>.

 PoolName defines the name of the pool to invoke, in the case of pools use in the project.

It is an optionnal parameter, it can be empty. Any value can be passed in this part of the

URL: if a matching pool is found, it is used by Convertigo, if no pool is found, it is ignored

and Convertigo returns to the default behavior. For more information about Pool object,

see "Pool" documentation and examples.

 Extension, ending the URL, can take the following values:

 xml,

 cxml,

 pxml,

 cpdf.

For example, with a project named test_project not including pools, in a local Convertigo

studio, the URL to call a transaction / sequence can be:

This is the recommended requester to use.
4 - 4 Reference Manual - CEMS 7.2.0

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
The XML requesters allow calling a transaction / sequence of a Convertigo project, possibly in

the context of a pool. They allow retreiving the XML response and possibly performing an XSL

transformation.

The difference between the four extensions is about the XSL transformation. It is described in

the table above:

Using these requesters, the client interacts directly with Convertigo engine.

The parametrization of the engine request, i.e. the definition of the transaction / sequence to

call and related parameters, is done by using engine reserved variables. For more information

about engine specific parameters, see "Engine reserved parameters" on page 4-7.

JSON REQUESTERS

These requesters are invoked by setting the ConvertigoRequester at the end of the URL

to the following expression: <PoolName>.<Extension>.

 PoolName defines the name of the pool to invoke, in the case of pools use in the project.

It is an optionnal parameter, it can be empty. Any value can be passed in this part of the

URL: if a matching pool is found, it is used by Convertigo, if no pool is found, it is ignored

and Convertigo returns to the default behavior. For more information about Pool object,

see "Pool" documentation and examples.

 Extension, ending the URL, can take the following values:

 json,

 jsonp.

For example, with a project named test_project not including pools, in a local Convertigo

studio, the URL to call a transaction / sequence can be:

The JSON requesters allow calling a transaction / sequence of a Convertigo project, possibly

Table 4 - 1: XML requesters extensions

Extension Description

.xml Convertigo sends the transaction / sequence XML as response, possibly including the
reference to the XSL file to use for the transformation (defined in the Convertigo project).
Then, the client (web browser or application) should perform the XSL transformation.

.cxml Abbreviation for Convertigo-XML. Convertigo performs the XSL transformation on server side,
if a style sheet is defined in the Convertigo project. Then, it sends the result as response to the
client.

.pxml Abbreviation for Pure-XML. Convertigo sends the transaction / sequence XML as response,
no XSL transformation is performed nor referenced, whatever is defined in the project.

.cpdf Abbreviation for Convertigo-PDF. Convertigo performs the XSL:FO transformation on server
side, if an XSL:FO style sheet is defined in the Convertigo project. Then, it sends the result as
PDF file to the client.

http://localhost:18080/convertigo/projects/test_project/.xml

http://localhost:18080/convertigo/projects/test_project/.json
4 - 5

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
in the context of a pool, and retreiving the JSON response.

The difference between the two extensions is about cross-domain issues. It is described in the

following table:

Using these requesters, the client interacts directly with Convertigo engine, dynamically

transforming standard output XML data to JSON structure.

The parametrization of the engine request, i.e. the definition of the transaction / sequence to

call and related parameters, is done by using engine reserved variables. For more information

about engine specific parameters, see "Engine reserved parameters" on page 4-7.

Call-back function specific to JSONP requester is parametered using a specific engine

reserved variable. For more information about specific engine reserved parameters, see

"JSONP specific reserved parameters" on page 4-8.

BINARIES REQUESTER

This requester is invoked by setting the ConvertigoRequester at the end of the URL to the

following expression: .bin.

For example, with a project named test_project, in a local Convertigo studio, the URL to

call a transaction / sequence can be:

The binaries requester allows retrieving the last attachment file downloaded by a transaction /

sequence of a Convertigo project. It can be called directly with the transaction extracting the

attachment.

Using this requester, the client interacts directly with Convertigo engine.

The parametrization of the engine request, i.e. the definition of the transaction / sequence to

call and related parameters, is done by using engine reserved parameters. For more

information about engine specific parameters, see "Engine reserved parameters" on page 4-7.

4.1.2 Convertigo reserved parameters

All Convertigo specific parameters are prefixed with '__' (double underscored). Depending on

the invoked requester, some reserved parameters can be used by the weblib AJAX framework,

some by Convertigo engine.

 Engine reserved parameters

Table 4 - 2: JSON requesters extensions

Extension Description

.json This extension allows an application to request Convertigo through an AJAX call, in the same
domain. Then, the application retrieves the transaction / sequence response as a JSON
stucture and should handle the data treatment.

.jsonp This extension allows an application to request Convertigo through a fake AJAX call (dynamic
inclusion of script elements), not in the same domain (cross-domain compatibility). Then,
the application is called back, receiving as parameter the transaction / sequence response as
a JSON stucture, and the call-back function should handle the data treatment.

http://localhost:18080/convertigo/projects/test_project/.bin
4 - 6 Reference Manual - CEMS 7.2.0

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
 Weblib reserved parameters

ENGINE RESERVED PARAMETERS

Convertigo engine request parametrization, i.e. the definition of the transaction / sequence to

call and related execution parameters, is done by using generic engine reserved parameters

that have to be passed in the request.

Other specific engine reserved parameters exist and can be used to handle connector-

related specific cases.

GENERIC ENGINE RESERVED PARAMETERS

Here is the list of Convertigo engine-managed reserved parameters, valid and usable for all

types of projects, and their description:

Table 4 - 3: Generic engine reserved parameters

Parameter name Description

__connector Name of the requested connector.
If this parameter is not present, the default connector of the requested project is used.

__transaction Name of the transaction to run.
If this parameter is not present or its value is an empty string, the default transaction of
specified connector is executed.

__sequence Name of the sequence to run.
As no default sequence exists for a project, if this parameter is not present or its value
is an empty string, the default transaction from default connector is executed.

__project Overrides the name of the requested project.
The project name is mostly set in the URI: http(s)://<ConvertigoServer>/
<ConvertigoAppName>/projects/<ProjectName>/
<ConvertigoRequester>?<parameters>. For more information on HTTP request
URI, see "Convertigo URLs" on page 4-2
If this parameter is present, it overrides the project name from the URI.

__testcase Name of the test case to run, in specified transaction / sequence.
If this parameter is present, the variable values will be retrieved from the test case
definition.

__context Name of the context in which run the specified transaction / sequence.
If this parameter is not present, Convertigo automatically creates or reuses a context,
named default, and attaches it to the client HTTP session cookie (JSessionId).
When XML response is returned from Convertigo, the context name is present in the
context attribute of the document element.
To reuse a context that was previously created, the __context parameter should be
set to the context name returned by Convertigo.

__user_reference This parameter is a user reference passed in entry to Convertigo transaction /
sequence, which is automatically inserted unchanged in the resulting output response.
It can be useful for the caller to be able to exactly determine from which request a
response belongs. The value of this parameter is automatically added in the generated
XML in the userReference attribute of the document element.
4 - 7

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
JSONP SPECIFIC RESERVED PARAMETERS

The following is the engine reserved parameter specific to JSONP requester and its

description:

__stub If true, the requested transaction/sequence response is retrieved from the stub
response (if a stub response is present for this transaction/sequence in the project).
Notes:
• When executing a transaction/sequence from stub, the Authenticated context

required property of the transaction/sequence is ignored: the context would never
be authenticated as the transaction/sequence setting the context as authenticated
could also be executed from stub

• In Convertigo Studio, a stub response can be easily created for a transaction/
sequence. To do so, execute the transaction/sequence, possibly using a test case.
Then, right-click on the transaction/sequence and select the Create stub from
current generated XML option. A stub file is created from the current response
XML for the transaction/sequence.

__nocache If true, the requested transaction / sequence response is not retrieved from the
cache (in the case of a cached transaction / sequence). Convertigo ignores the
cached response and returns a freshly built response.
For more information about transaction / sequence cache parametrization, see
Response life-time property documentation in chapter 2 of this manual.

__supervision If this parameter is present, the requested transaction / sequence response is not
stored in the cache (in the case of a cached transaction / sequence).
If a response was already stored in the cache, it is not updated.
For more information about transaction / sequence cache parametrization, see
Response life-time property documentation in chapter 2 of this manual.

__removeContext If this parameter is present and its value not equal to false, the end of Convertigo
context is required at the end of the transaction / sequence execution.
This is mainly used in case of web Services projects.
This parameter is similar to the following JavaScript statement set in the transaction /
sequence core:
context.requireEndOfContext = true;

__removeNamespaces If this parameter is present, the namespaces or namespace suffixes that appear in the
XML output are removed before Convertigo sends the response.
Note: For example, namespace suffixes can appear in XML ouput after XML nodes
are copied from Call Transaction/Call Sequence step responses.

__content_type Overrides the Content-type HTTP header value of the Convertigo response for the
REST requesters (.xml, .pxml, .json).

__lang Defines the output language for the requested transaction/sequence response. This
parameter value is added as a lang attribute in the document element of the output
XML and has to be managed with the response XML. Once the __lang parameter is
received for a transaction/sequence, the context keeps and re-uses this value in every
other transaction/sequence output XML.
The lang attribute of the document element is automatically used by the legacy
translation extraction rule. For more information, see Translate text extraction rule
documentation in chapter 2 of this manual.

__async If true (or value 1), the requested transaction will be or is being processed
asynchroneously, an asynchronous job is created.
Warning! Asynchronous mode should be used in specific cases and has to be
evaluated by a Convertigo expert developer.

__abort If this parameter is present, the end of the asynchronous job is required.
Warning! Asynchronous mode should be used in specific cases and has to be
evaluated by a Convertigo expert developer.

Table 4 - 3: Generic engine reserved parameters

Parameter name Description
4 - 8 Reference Manual - CEMS 7.2.0

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
WEB CONNECTOR-SPECIFIC RESERVED PARAMETERS

The following list is the list of web connector-specific engine reserved parameters and their

description:

LEGACY EMULATOR-SPECIFIC RESERVED PARAMETERS

The following list is the list of legacy emulator-specific engine reserved parameters and their

description:

Table 4 - 4: JSONP specific engine reserved parameters

Parameter name Description

__callback Defines the name of the client application function to call back after the
Convertigo request execution on a cross-domain platform.

Table 4 - 5: Web connector-specific engine reserved parameters

Parameter name Description

__header_<headerName> Allows to dynamically pass an HTTP header to an HTTP transaction. It results
into sending an HTTP header from Convertigo to the target HTTPserver.
This specific parameter defines two pieces of information:
• <headerName>: defines the HTTP header name to send to the target

server,
• the parameter value is sent as header value to the target server.
For example, the following specific parameter can be sent to a transaction:
__header_test=myTestHeader
which results in sending the following header to the target server reached by the
HTTP connector: test=myTestHeader.

__<HTTPverb>_<varName> Allows to dynamically pass an HTTP variable to an HTTP transaction. It results
into sending an HTTP variable from Convertigo to the target HTTPserver.
This specific parameter defines three pieces of information:
• <HTTPverb>: defines the HTTP verb to use to send this variable to the

target server, can take both values POST or GET,
• <varName>: defines the variable name to send to the target server,
• the parameter value is sent as variable value to the target server.
For example, the following specific parameters can be sent to a transaction:
__GET_login=johnsmith&__POST_password=mypassword
which results in sending the following variables to the target server reached by
the HTTP connector:
• login=johnsmith - sent in the URL query string,
• password=mypassword - sent in POST data.

__uri Allows to dynamically change the value of the Sub path property of the
requested HTTP transaction.
Warning! At the end of the transaction execution, the Sub path property is set
back to its original value.

__statefull Allows to dynamically change the value of the Maintains connector state
property of the requested HTML transaction.
If set to true, the running transaction property is changed to true. If set to
false, the running transaction property is changed to false.
Warning! At the end of the transaction execution, the Maintains connector
state property remains to the updated value: the original value is not set back.
4 - 9

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
CARIOCA PORTAL-SPECIFIC RESERVED PARAMETERS

The following list is the list of specific engine reserved parameters used when Convertigo is

accessed through Carioca portal and their description:

Table 4 - 6: Legacy emulator-specific engine reserved parameters

Parameter name Description

__service Optional. Used at connection time only to input a specific connection parameter
depending on connector type:
• IBM 3270,5250: device name
• Bull DKU: mailbox
• VDX 40/80col: service code.
When this parameter is used, it also overrides the mainframe connection IP adress or
name set in the project connector.
The correct syntax for this parameter value is:
<devicename>,DIR|<mainframe_ip>:<mainframe_port>

__javelin_current_field This parameter holds the name of the current selected field. Field names must be in
the form ___field_l<Y>_c<X>, with:
• X: the field column, starting at 1,
• Y: the field line,starting at 1.
Convertigo uses this value to position the input cursor on the specified field before
issuing an action as 'KEY_ENTER'.

__javelin_action This parameter holds the name of the action to be done on the target application.
Actions can be:
• any emulator actions as described in the Appendix “Legacy emulator actions

table” on page A - 8,
• one of the following Convertigo commands:

• convertigo_reconnect: disconnects and reconnects the emulator
session,

• convertigo_refresh: does nothing, just get the current XML,
• convertigo_destroy_session: disconnects, and recreates an emualtor

instance (this may be used to reset completly an emulator session).

__field_l<y>_c<x> Any parameter of this form has its value inserted automatically in the target field,
where:
• X: the field column, starting at 1,
• Y: the field line,starting at 1.

Table 4 - 7: Engine reserved parameters for access through Carioca

Parameter name Description

__sesskey Authentication key generated by Carioca portal. This key is decoded by Convertigo to
check the consistency and origin of the request.

__bCarioca Set to "true" defines the origin of the request as coming from Carioca portal. If set to
"true", the __sesskey variable has to be passed and is verified by Convertigo.

__user Carioca portal user name.

__password Carioca portal user password.

__bVic Set to "true" defines the user as a former VIC portal user.

__VicUser Former VIC portal user name.

__VicGroup VIC portal authorization group. Authorization groups are used in the portal to define to
which services the user has the right to access.

__VicServiceCode VIC portal service name.

__VicDteAddress Connection address of the VIC service.
4 - 10 Reference Manual - CEMS 7.2.0

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
WEBLIB RESERVED PARAMETERS

Weblib framework parametrization can be performed by updating global variables values. Lots

of these variables can be set thanks to weblib reserved parameters that have to be passed:

 in the request, using a query string that sends all parameters to the network, or

 by a hash query (using a #) that only sends needed parameters in POST data.

Here is the list of Convertigo weblib-managed reserved parameters and their description:

__VicCommDevice CommDevice address used for a three thirds architecture (case of the PAVI used for
Videotex emulator) through Carioca or VIC portal.

Table 4 - 8: Weblib reserved parameters

Parameter name Description

__ajax_method This parameter enables modifying the HTTP method of the AJAX requests from the
weblib to Convertigo.
It can take both values: "GET" or "POST". Default variable value is "POST".

__auto_refresh In case of a Web Clipper project, weblib framework is able to check current page’s
DOM changes, and to automatically refresh the clipped page displayed to the user.
This variable is by default set to "true", enabling auto refreshing. Using this
parameter to set it to "false" disables auto refreshing.
The auto refresh needs more network trafic because the weblib framework pools the
connector state regularly to monitor DOM changes.

__auto_resize In case of a response presented as a widget in a portal, the weblib framework is able
to automatically adapt the height of the widget to its content, when the content is
modified by a transaction or sequence result.
This variable is by default set to "true", enabling auto resizing. Using this parameter
to set it to "false" disables auto resizing.

__enc If set to "true", activates RSA encoding. Default variable value is "false".

__first_call This parameter defines whether a call to Convertigo has to be performed using the
page’s query/hash parameters, after the init_finished hook. By default set to
"true", the page automatically calls convertigo using these parameters.
Beware that the return value of the init_finished hook has to be in adequacy
with this parameter value or can affect the expected behavior.

Table 4 - 7: Engine reserved parameters for access through Carioca

Parameter name Description
4 - 11

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
__localCache This parameter allows to configure the use of the Local Cache feature on C8O calls
and responses. Thanks to the Local Cache, you can save network traffic between
the device and the server, and you are able to display data when the device is not
connected to the network.
When enabled, the Local Cache permits to store the responses to a C8O call locally
on the device, using the variables and their values as cache key.
This parameter takes a JSON structure composed as follows:
• "enabled": enables (true value) or disables (false value) the Local Cache on

a Convertigo requestable. Default value is true.
• "policy": defines whether the response should be retrieved from Local Cache

or from Convertigo server when the device can access the network. Can take
two values:
• "priority-server": for server priority, meaning that if the device can

access the network, the call is performed and the response is retrieved from
server,

• "priority-local": for local priority, meaning that even when the device
can access the network, the call is not performed if a response is locally
cached.

In any case, when the device has no network access, the local cached response
is used, if existing.
The policy parameter is mandatory as it has no default value.

• "ttl": defines the time to live of the cached response, in milliseconds. If no
value is passed, the time to live is infinite.

__requester_prefix This parameter defines a prefix before the requester extension in the AJAX requests
from the weblib to Convertigo. It matches the pool name part of the URL.
This parameter can take any value: if a matching pool is found, it is used by
Convertigo, if no pool is found, it is ignored and Convertigo returns to the default
behavior.

__resize_offset Linked to the auto-resizing fonctionnality. This parameter enables defining an offset
height (in pixels) to add to the automatically calculated height, in order to adjust the
resizing height.
This variable is by default set to "50" (pixels), the value must be a number (in pixels).

__send_portal_username In case of a response presented as a widget in gatein portal (Convertigo Mashup
Composer), the weblib framework is able to automatically add a
portal_username parameter to the request to Convertigo with the name of the
user logged in the portal as value.
This variable is by default set to "true", enabling sending portal username. Using
this parameter to set it to "false" disables sending portal username.

__target_append The response of a Convertigo transaction / sequence execution, possibly presented
thanks to an XSL transformation, can either:
• replace the whole previsouly displayed content,
• be appended to the previsouly displayed content,
thanks to the weblib framework.
This variable enables changing the appending mode. Using this parameter to:
• set it to "false", the response replaces previous content,
• set it to "true", the response is appended to previous content.
Default variable value is "false".
Paired with the __target_id variable, these settings enable to replace or add content
to the whole content or a part of the widget.

Table 4 - 8: Weblib reserved parameters

Parameter name Description
4 - 12 Reference Manual - CEMS 7.2.0

Chapter "Interfaces to Convertigo"
HTTP protocol interface to Convertigo
__target_id The response of a Convertigo transaction / sequence execution, possibly presented
thanks to an XSL transformation, can either:
• be added at the root of the widget,
• be added in an Element from the widget,
thanks to the weblib framework.
This variable enables defining the id of the Element into which the response has to
be added.
Default value is "" (empty string) and aims the body element. If this variable is left
empty, the response is added at the root of the widget.
Paired with the __target_append variable, these settings enable to replace or add
content to the whole content or a part of the widget.

__testplatform If called with no parameters, the weblib framework automatically redirects the client
to the test-platform of the project. This parameter enables changing this default
behavior.
• If set to "true", the client is always redirected to the test-platform.
• If set to "false", the client is never redirected to the test-platform.

__use_siteclipper_plugin In case of a Site Clipper project, this parameter enables using the iframe
encapsulation for Site Clipper requests.
If set to "true", the clipped web page is loaded through an iframe, which enables:
• hiding the Site Clipper URL,
• handling interactions and resizing, in case of a response presented as a widget

in a portal.
If set to "false", the clipped page is loaded directly through Site Clipper URL.
Default value is "true".

__xsl_side This parameter enables modifying the side of response’s XSL transformation, client
XSL transformation or server XSL transformation. It matches the requester
extension to set in the AJAX requests from the weblib to Convertigo.
This variable can take two values:
• "client" that will call ".xml" requester extension, or
• "server" that will call ".cxml" requester extension.
Default value is "client".

Table 4 - 8: Weblib reserved parameters

Parameter name Description
4 - 13

Chapter "Interfaces to Convertigo"
Web service interface to Convertigo
4.2 Web service interface to Convertigo

Convertigo projects can be accessed using web services. This section describes possible

URLs to access Convertigo projects through the two types of web services that are supported,

then it describes the problem of context state conservation.

 SOAP web services

 REST web services

 Context state conservation

4.2.1 SOAP web services

SOAP WSDL of a Convertigo project can be accessed by using the following URL:

Where:

 ConvertigoServer is the host name or IP address of your Convertigo server, with possibly

a port number.

 A local Convertigo Studio has as host name localhost and as default port number

18080 for HTTP.

 A Convertigo Server installed locally on your computer shares the same host name:

localhost. The Convertigo Server default port number is 28080 for HTTP.

 A Convertigo Cloud server is accessed through its server name, for example:

me.convertigo.net (no port to provide in this case).

 ConvertigoAppName defines the name of the Convertigo web application.

 A local Convertigo Studio or a Convertigo Server installed locally has convertigo as

Convertigo app name.

 A Convertigo Cloud server has cems as Convertigo app name.

 ProjectName defines the name of the project you want to invoke in Convertigo. If the

project doesn’t exist, the application server generates an error (HTTP 404 Not Found).

 WsType defines the type of encoding you want for SOAP web service. It corresponds to

SOAP web service requesters that can be invoked on Convertigo. For more information

For more information about Convertigo URLs, see "Convertigo URLs" on
page 4-2.

Accessing a Convertigo project’s WSDL on a Studio or on a Server
has a different behavior. In Studio, it uses temporary files
dynamically updated while developing the project. In Server, it uses
the complete generated WSDL file with schemas.
Prefer to retrieve a project’s WSDL from a Convertigo Server.

http(s)://<ConvertigoServer>/<ConvertigoAppName>/projects/

<ProjectName>/<WsType>?WSDL
4 - 14 Reference Manual - CEMS 7.2.0

Chapter "Interfaces to Convertigo"
Web service interface to Convertigo
about the other available requesters, see "Convertigo URLs" on page 4-2.

This WsType part of the URL can take several values that are detailed in following table:

For example, with a project named test_project in a local Convertigo Server, the URL to

retrieve the SOAP WSDL can be:

For the same project in a Convertigo Cloud Server, the URL to retrieve the SOAP WSDL is:

4.2.2 REST web services

Any Convertigo project can be invoked as a REST web service, using the following URL:

Where:

 ConvertigoServer is the host name or IP address of your Convertigo server, with possibly

a port number.

 A local Convertigo Studio will have as host name localhost and as default port

number 18080.

 A Convertigo Server installed locally on your computer will share the same host name:

localhost. When installed in an existing application server, it will have as IP address

the IP address of the application server. The Convertigo Server default port number is

28080.

 A Convertigo Cloud server is accessed through its server name, for example:

Table 4 - 9: SOAP encoding types

Extension Description

.ws This extension is used for RPC encoded web services.

.wsl This extension is used for document/literal web services.

We strongly recommend to use only document/literal SOAP
web services nowadays.

The project accessed through SOAP web service interface should
declare at least one public transaction or sequence, with its
schemas extracted. Refer to corresponding "Quick start tutorials"
for more information about development and parametrization of
such transactions and sequences.

http://localhost:28080/convertigo/projects/test_project/.wsl?WSDL

http://me.convertigo.net/cems/projects/test_project/.wsl?WSDL

http(s)://<ConvertigoServer>/<ConvertigoAppName>/projects/

<ProjectName>/.pxml
4 - 15

Chapter "Interfaces to Convertigo"
Web service interface to Convertigo
me.convertigo.net (no port to provide in this case).

 ConvertigoAppName defines the name of the Convertigo web application.

 A local Convertigo Studio or a Convertigo Server installed locally has convertigo as

Convertigo app name.

 A Convertigo Cloud server has cems as Convertigo app name.

 ProjectName defines the name of the project you want to invoke in Convertigo. If the

project doesn’t exist, the application server generates an error (HTTP 404 Not Found).

You can notice that this URL uses an XML requester; for more information about the other

available requesters, see "Convertigo URLs" on page 4-2.

For more information about HTTP protocol to call transactions or sequences and the variables

to pass to this request, see "HTTP protocol interface to Convertigo" on page 4-2.

4.2.3 Context state conservation

When using web services, you can have:

 Stateless web services: when the response of a web service method does not depend

on a previous state left by a preceding web service call. This is also called "atomic" web

services.

 Stateful web services: when the response of a web service method does depend on a

previous state left by a preceding call. Convertigo projects mostly generate stateful web

services. For example, you cannot get information from a legacy application or a web

application if you don’t call a "login" transaction before.

Consuming stateful web services, the programmer must maintain the HTTP session from its

calling application to Convertigo between two methods calls. See the corresponding web

service client documentation to do so.

A FEW EXAMPLES FOR SOAP CLIENTS

If you are using Java AXIS web service client, simply use the following line of code:

If your are using Microsoft .NET web service client, use this code construction (C# Syntax):

locator.setMaintainSession=true;

MyWs = new ConvertigoWebService();

// Creates an instance of the .NET WebServiceClient.

MyCookieJar = new CookieContainer();

// Creates an new Instance of a CookieContainer, this will hold the

HTTP Session Cookie.

MyWs.CookieContainer = fccCookieJar;

// Links the web service client with the cookie Container.
4 - 16 Reference Manual - CEMS 7.2.0

Chapter "Interfaces to Convertigo"
Web service interface to Convertigo
CASE OF REST CALLS

For REST web service calls, be sure that the HTTP client will maintain session cookies with

Convertigo.
4 - 17

Chapter "Interfaces to Convertigo"
Web service interface to Convertigo
4 - 18 Reference Manual - CEMS 7.2.0

5 Convertigo Templating
Framework

This chapter introduces the Convertigo Templating Framework, concepts and purpose.

 Convertigo Templating Framework presentation

 Launching a Convertigo requestable

 Listening for a C8O requestable response

 HTML templating

 Routing
5 - 1

Chapter "Convertigo Templating Framework"
Convertigo Templating Framework presentation
5.1 Convertigo Templating Framework presentation

This section introduces the Convertigo Templating Framework:

 Objectives

 Templating system

5.1.1 Objectives

The Convertigo Templating Framework (CTF) aims at helping Convertigo programmers to

execute transactions and/or sequences in a mobile or web application, and to provide them

with a very efficient way to fill out data inside HTML pages.

The CTF also provides a routing table to automate the transition from one screen to another

according to the result of Convertigo requestable calls. It aims at automatically and easily deal

with errors.

The CTF follows the MVC (Model-View-Controller) model, where:

 Convertigo sequences provide the data (model),

 HTML templates provide the view,

 The routing table provides the controller.

5.1.2 Templating system

Inside a web/mobile page, the main idea is to insert special tags to handle the followings:

 Launch a Convertigo requestable (i.e. a transaction or a sequence),

 Register some HTML elements as listeners of specific requestables responses,

 Fill out HTML parts with the data returned in XML response of a requestable call,

 Update data from the requestable results each time the requestable is called (i.e. it can

automatically update data).

A Convertigo sample project, named CTF gallery, lists all Convertigo
Templating Framework features, shows pieces of code for each feature
and uses the CTF to dynamically display the result.
You can find the CTF gallery in your Convertigo Studio, in the new
project wizard, choose Convertigo Samples and Demos > Mobile
samples category.
The CTF gallery is also available in Mobile demos page in our
Developer Network website: http://www.convertigo.com/en/demos/
mobile-demos/395-demos-ctf-gallery.html
5 - 2 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
Launching a Convertigo requestable
5.2 Launching a Convertigo requestable

This section presents how the Convertigo programmer should use the Convertigo Templating

Framework to easily call a Convertigo transaction or sequence:

 C8O call - Calling transactions or sequences

 Call mode

 Call condition

 Immediate action and call

 Local cache on calls

 Non C8O-requestable calls

5.2.1 C8O call - Calling transactions or sequences

The CTF hides all the complexity of calling Convertigo transactions or sequences, i.e. the

Convertigo programmer does not have to write a single line of JavaScript to launch a

Convertigo requestable.

 Requestable call format

 Requestable call and Variables

REQUESTABLE CALL FORMAT

A C8O call is defined by adding the attribute data-c8o-call to any clickable HTML element.

We have a unique entry point, whether we call transactions or sequences.

A requestable will be addressed with the following syntax:

 For a transaction: [project].connector.transaction

The project name is optional, i.e. if not specified, the current project will be used.

 For a sequence: [project].sequence

The project name is optional, i.e. if not specified, the current project will be used.

When the CTF displays an HTML page, it searches for all C8O call declarations and adds click

listeners on each element declaring a C8O call. In this way, a call is performed when a click

event is launched on one of these elements.

 If the data-c8o-call attribute is declared on a clickable element, the call is performed when

the item is clicked.

EXAMPLE

This will call the Login sequence of the APIs project.

 If the data-c8o-call attribute is added to a <form> element, the call is performed

when the form is submitted (i.e after clicking on button or on submit type input, or hitting

enter in any field).

<button data-c8o-call="APIs.Login" id="loginButton" value="Login">

</button>
5 - 3

Chapter "Convertigo Templating Framework"
Launching a Convertigo requestable
EXAMPLE

REQUESTABLE CALL AND VARIABLES

Any transaction or sequence call may require some parameters (i.e. variables).

The CTF automatically handles C8O call variables according to the following rules:

 If the data-c8o-call attribute is added to a <form> element, then all form elements

(such as <input>, <select>, <textarea>...) declared within the <form> will be

injected in the C8O call as requestable parameters (variables) when the form is submitted

(i.e after clicking on button or on submit type input, or hitting enter in any field).

EXAMPLE

 If the data-c8o-call attribute is added to a node inside a <form> element, then all

form elements (such as <input>, <select>, <textarea>...) declared within the

<form> will be injected in the C8O call as requestable parameters (variables).

EXAMPLE

In case of form submission through CTF, the parameters passed in the
call to Convertigo requestable are named after the name attribute of the
form elements, such as for a classic HTML form submission.

In this case, the submit event on the form is not intercepted and will
perform a true submit. You may have to add a handler returning
false to avoid the page from reloading.

<form id="formLogin" data-c8o-call="APIs.Login">

</form>

<form id="formLogin" data-c8o-call="APIs.Login">

<label for="username">User name</label>

<input type="text" id="username" name="username"/>

<label for="password">Password</label>

<input type="password" id="password" name="password"/>

<button>Login</button>

</form>

<form id="formLogin">

<label for="username">User name</label>

<input type="text" id="username" name="username"/>

<label for="password">Password</label>

<input type="password" id="password" name="password"/>

<button data-c8o-call="APIs.Login">Login</button>

</form>
5 - 4 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
Launching a Convertigo requestable
 If both <form> and clickable element have a data-c8o-call attribute, the clickable

element’s attribute value is used in priority when clicked.

EXAMPLE

 If the node defining the data-c8o-call is NOT inside a <form> element, then all sub

nodes of this node containing the data-c8o-variable attribute will be injected in the

C8O call as a C8O requestable parameter (variable).

EXAMPLE

 To add several variables to a C8O call, simply add a data-c8o-variables attribute

(note the ending ’s’) to the HTML node declaring the data-c8o-call. The data-c8o-

variables attribute contains a JSON structure with several variables and their values.

EXAMPLE

 Variable declaration styles can be mixed in <form> element. A data-c8o-call attribute

on an element inside a <form> element overrides the called transaction or sequence, in

the same way, variables from data-c8o-variables attribute override the elsewhere

declared variables:

Pay attention to the simple quotes/double quotes pairs: as a
standard JSON object, it is mandatory that the variable names and
values are surrounded by double quotes inside the structure. The
data-c8o-variables attribute value is therefore surrounded by simple
quotes.

<form id="formLogin" data-c8o-call="APIs.Login">

<label for="username">User name</label>

<input type="text" id="username" name="username"/>

<label for="password">Password</label>

<input type="password" id="password" name="password"/>

<button>Login</button>

<button data-c8o-call="APIs.Regsiter">Register</button>

</form>

Ticket ID: 123456

<a href="#" data-c8o-call=".GetDetails"

data-c8o-variables='{"ticketID":"123456","price":"42"}'>

Paris / Montpellier

5 - 5

Chapter "Convertigo Templating Framework"
Launching a Convertigo requestable
EXAMPLE

 Variable styles can also be mixed in non-form element.

EXAMPLE

When a variable is both declared in data-c8o-variables and data-c8o-variable, it is

considered as a multi-valued variable: all values are sent to the requestable.

5.2.2 Call mode

A C8O call can be launched in three modes, thanks to the data-c8o-call-mode attribute

that can be added to the HTML node declaring the data-c8o-call.

This attribute can take the following values:

Table 5 - 1: Expected result of above code example

Click Login button Click Register button

Call Login sequence Register sequence

__context ctx1 ctx2

key secret secret

userLabel User name User name

username John John

password 1234 1234

<form id="formLogin" data-c8o-call="APIs.Login"

data-c8o-variables='{"__context":"ctxt1","key":"secret"}'>

<label for="username" data-c8o-variable="userLabel">User

name</label>

<input type="text" id="username" name="username"

value="John"/>

<label for="password">Password</label>

<input type="password" id="password" name="password"

value="1234"/>

<button>Login</button>

<button data-c8o-call="APIs.Regsiter"

data-c8o-variables=’{"__context":"ctxt2"}’>Register</button>

</form>

<a href="#" data-c8o-call=".GetDetails"

data-c8o-variables='{"ticketID":"123456","price":"42"}'>

Paris / Montpellier

Ticket ID: 9999999

5 - 6 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
Launching a Convertigo requestable
 click: Default behavior (HTML element click or form submit).

 auto: The call is automatically triggered when the containing HTML element is first

loaded, i.e. when the DOM is loaded, even if the element is not visible nor rendered by the

CTF.

 timer:<number_of_seconds>: This is the same as auto mode, but the call is

triggered ’n’ seconds after the document ready event.

EXAMPLES

 Default mode:

 Auto mode:

 Timer mode, 30 seconds:

5.2.3 Call condition

Sometimes we would like to trigger a C8O call on a condition. The CTF is able to operate

conditional C8O calls by using the data-c8o-call-condition attribute (added to the

HTML node declaring the data-c8o-call).

The data-c8o-call-condition attribute can be defined using one of the following

expressions:

 a simple jQuery selector applied on the HTML DOM,

 a function name, the function should be declared with the following signature:

Pay attention that in jQuery Mobile framework, all pages are in the
same HTML DOM. The auto mode would then be launched at the
first start of the application, when all DOM is loaded.

Logout

Logout

Logout

5 - 7

Chapter "Convertigo Templating Framework"
Launching a Convertigo requestable
The condition is considered as validated if the jQuery selector returns a non empty list, or if the

JavaScript function returns true.

EXAMPLES

 Simple selector:

 Function:

5.2.4 Immediate action and call

In order to make the user feel like the mobile application is responsive, we sometimes want to

be able to change page when a call is performed, before its response arrives. The CTF is able

to perform an action (a change of page) when a C8O call is performed thanks to the data-

c8o-call-action attribute (added to the HTML node declaring the data-c8o-call).

The data-c8o-call-action attribute takes as value a JSON structure of the following

format:

function () {

// "this" equals to the HTML element containing the

data-c8o-call attribute (DOM API)

// returns true of false

}

<a href="#" data-c8o-call=".GetList"

data-c8o-call-condition="h1:contains('1')">

List of elements

<a href="#" data-c8o-call=".GetDList"

data-c8o-call-condition="myConditionFunction">

List of elements

<script>

function myConditionFunction() {

var $this = $(this);

// work with $this...

return true;

}

</script>
5 - 8 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
Launching a Convertigo requestable
This structure is a subset (limited to goToPage and options parameters) of what can be

defined in an action of the routine table (see "Routing table" on page 5-46). To get the detailed

definitions of the two goToPage and options parameters, see Table 5 - 2 on page 5-48.

EXAMPLE

Do not forget that the options parameter contains a nested JSON structure.

5.2.5 Local cache on calls

Sometimes we would like to use local cache on C8O calls and responses, in order to:

 save network traffic between the device and the server,

 be able to display data when the device is not connected to the network.

The Local Cache feature allows to store locally on the device the responses to a C8O call,

using the variables and their values as cache key.

To use the Local Cache, simply send the __localCache variable in the C8O call (added to

the other call variables). This __localCache variable takes a JSON structure of the following

format:

Think about surrounding by quotes the keys (goToPage and
options) and string values in your JSON structure!
Beware to use double quotes and not simple quotes as this is a
standard JSON structure.
As this structure is put in an attribute, use simple quotes to delimit
the attribute value.

{

"goToPage": "<pageId>",

"options": {

...

}

}

<a href="#" data-c8o-call=".GetDetails"

data-c8o-variables='{"ticketID":"123456","price":"42"}'

data-c8o-call-action='{"goToPage": "#details",

"options": { "transition": "pop"}}'>

Paris / Montpellier

Ticket ID: 9999999

5 - 9

Chapter "Convertigo Templating Framework"
Launching a Convertigo requestable
To get the detailed definition of the __localCache reserved parameter, see "Weblib reserved

parameters" on page 4-11.

EXAMPLES

 Sending __localCache variable in an HTML input:

Think about surrounding by quotes the keys (enabled, policy and
ttl) and string values in your JSON structure!
Beware to use double quotes and not simple quotes as this is a
standard JSON structure.

{

"enabled":true/false,

// allows to enable or disable the local cache on a Convertigo

requestable , default value is true

"policy":"priority-server"/"priority-local",

// defines whether the response should be retrieved from local

cache or from Convertigo server when the device can access the

network

// when the device has no network access, the local cache

response is used, if existing

// this parameter is mandatory as it has no default value

"ttl":<time-to-live in ms>

// defines the time to live of the cached response, in

milliseconds

// if no value is passed, the time to live is infinite

}

5 - 10 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
Launching a Convertigo requestable
In this case, the JSON structure is passed in an attribute value, so it has to be surrounded by

quotes. As inside the JSON structure we already use double-quotes, we recommend to use

simple quotes to surround the attribute value.

 Sending __localCache variable in a data-c8o-variables CTF attribute:

In this case, the JSON structure is a value in another JSON structure, so it does not have to

be surrounded by quotes. We can use the double-quotes inside the JSON structure as the

data-c8o-variables attribute value is surrounded by simple quotes.

5.2.6 Non C8O-requestable calls

Third party web services are handled through sequences and HTTP connectors in Convertigo

projects. Thus, they are then natively integrated into the CTF.

<form data-c8o-call=".Login">

<input type="hidden" name="__localCache"

value='{"enabled":true,

"policy":"priority-server",

"ttl":86400000}'

/>

<div data-role="fieldcontain">

<label for="userId">User </label>

<input type="text" id="userId" name="user"

value="username" placeholder="username"/>

</div>

<div data-role="fieldcontain">

<label for="password">Password </label>

<input type="password" id="password" name="password"

value="password" placeholder="password"/>

</div>

<p id="info">Please type your username and password</p>

<button data-theme="b" id="loginButton">Login</button>

</form>

<a href="#" data-c8o-call=".GetDetails"

data-c8o-variables='{

"id": "__=id__",

"__localCache": {"enabled":true,

"policy": "priority-local",

"ttl": 120000}

}'>

<h3>__=title__</h3>

5 - 11

Chapter "Convertigo Templating Framework"
Listening for a C8O requestable response
5.3 Listening for a C8O requestable response

This section presents how the Convertigo programmer should use the CTF to easily handle in

a declarative way Convertigo transactions or sequences responses:

 Listener concept

 Listen condition

 Data accumulation

5.3.1 Listener concept

The CTF provides the data-c8o-listen attribute to declare that an HTML node is

“interested” by the response of a given requestable.

SIMPLE LISTENER

The data-c8o-listen attribute follows the same rules as the data-c8o-call attribute

concerning the requestable name (see "Requestable call format" on page 5-3).

EXAMPLE

ANONYMOUS LISTENER

The data-c8o-listen attribute can define that the node listens to any requestable.

EXAMPLE

WILDCARD PATTERN LISTENER

The data-c8o-listen attribute can define that the node listens to requestables following a

wildcard pattern.

EXAMPLES

 any sequence from the current project:

 any sequence from the APIs project:

 any transaction from the APIs project and MyConnector connector:

 any transaction from the current project and MyConnector connector:

<p data-c8o-listen=".OpenWorkOrder">Work order</p>

<p data-c8o-listen="*">Work order</p>

<p data-c8o-listen=".*">Work order</p>

<p data-c8o-listen="APIs.*">Work order</p>

<p data-c8o-listen="APIs.MyConnector.*">Work order</p>
5 - 12 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
Listening for a C8O requestable response
MULTIPLE LISTENERS

The data-c8o-listen attribute can define that the node listens to several requestables. The

requestable names (or patterns) separated by the comma character ','.

The list of listened requestables may contain space characters.

EXAMPLE

This will listen to both StopLabor and GetLabor sequences.

5.3.2 Listen condition

The CTF can handle nodes listening to a C8O call only if a condition is matching. A conditional

C8O listen is defined by using the data-c8o-listen-condition attribute, added to the

HTML node declaring the data-c8o-listen.

The data-c8o-listen-condition attribute can be defined using one of the following

expressions:

 a simple jQuery selector applied on the received XML document,

 a function name, the function should be declared with the following signature:

The condition is considered as validated if the jQuery selector returns a non empty list, or if the

JavaScript function returns true.

EXAMPLES

 Simple selector:

<p data-c8o-listen=".MyConnector.*">Work order</p>

<div data-c8o-listen=".StopLabor, .GetLabors">

...

</div>

function($doc, c8oData) {

// $doc is the jQuery object of the response XML document

// c8oData is the object containing key/value parameters sent

to the request

// "this" equals to the HTML element containing the

data-c8o-listen attribute (DOM API)

// returns true of false

}

<div data-c8o-listen=".GetList"

data-c8o-listen-condition="items>item">

...

</div>
5 - 13

Chapter "Convertigo Templating Framework"
Listening for a C8O requestable response
 Function:

5.3.3 Data accumulation

The CTF can accumulate listen data in a node that has already been templated using the

data-c8o-accumulate attribute, added to the HTML node declaring the data-c8o-listen.

This can be useful for filling dynamically a table page per page for instance.

The data-c8o-accumulate attribute can take two values:

 append: will accumulate new data at the end of existing data,

 prepend: will accumulate new data at the beginning of existing data.

EXAMPLE

This will listen to GetLabor sequence but accumulate data instead of replacing data. This can

be useful for filling dynamically a table page per page for instance.

<div data-c8o-listen=".GetList"

data-c8o-listen-condition="myConditionFunction">

...

</div>

<script>

function myConditionFunction($doc, c8oData) {

var $this = $(this);

// work with $this, $doc...

return true;

}

</script>

<div data-c8o-listen=".GetLabors" data-c8o-accumulate="append">

...

</div>
5 - 14 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
5.4 HTML templating

Once an HTML element is listening to one or more requestable responses, we can construct

the HTML with data coming from the requestable XML response.

This section presents how the Convertigo programmer should use the powerful declarative

patterns of the Convertigo Templating Framework to easily fill out data from the requestables

XML responses in the HTML document:

 Different types of patterns

 Simple templating

 Nested listeners

 Conditional templating

 Iterative templating

 Nested iterations

 References use

 Late rendering

 Before rendering callback

 After rendering callback

 Inline templating

5.4.1 Different types of patterns

The CTF provides several types of patterns that can be used to select XML data onto which to

work, to display data in HTML elements, to decide whether or not to render a part of HTML.

These different types of patterns are presented in this section:

 Templating patterns

 Selecting patterns

TEMPLATING PATTERNS

Templating patterns are those which can be used for rendering data inside HTML code.

Basically, templating will be achieved by substituting the patterns by matching XML data.

These patterns are one of the following forms:

 Simple templating pattern: __=<jQuery selector>__

This pattern is composed of a jQuery selector surrounded by a "double underscore and equals"

character at the begining, and a "double underscore" character at the end.

It refers to the simple data pointed by the jQuery selector and allows to display it as a string

value. It provides an empty string if no result is found in the XML data.

Notes:

 The current element can be selected by selector ".".

 In the case of a node list matching the selector, the simple templating pattern displays
5 - 15

Chapter "Convertigo Templating Framework"
HTML templating
the text value of the first element of the node list.

 Enhanced JSON structure templating pattern: __{<enhanced JSON selection

structure>}__

This pattern is composed of a JSON structure surrounded by a "double underscore and

opening brace" character at the begining, and a "closing brance and double underscore"

character at the end.

TEMPLATING PATTERN JSON STRUCTURE SPECIFICATION:

__{

"mode": "<find|index>",

// Default mode is "find" and enables the "find", "attr", "default", "formatter"

and "ref" options.

// The "index" mode returns the current iteration index in a data-c8o-each template and

enables the "formatter" and "ref" options.

MODE FIND

"find": "<jquery selector>",

// Combines text contents of all elements in the set of matched elements, including their

descendants. The current element can be selected by selector ".".

"attr": "<attribute name>",

// Attribute value of the first element of the found elements.

"default": "<default value>",

// Default value if no results.

"formatter": "<formatting function>",

// Name of the JS function to call in order to format data. See formatting function signature

below.

"ref": "<reference name>",

// Should contain the name of an ancestor data-c8o-ref anchor (see "References use" on

page 5-33). The "find" or "index" mode will use the referenced XML data as current

context.

// Be aware that the reference name used here can only refer to a reference from the same

XML response. References from a response are kept until a new XML response arrives.

"type": "<string|fragment>",

// The "fragment" type allows to copy the selected elements (as found by the "find"

option) and their children as an HTML DOM fragment.

// Default type is "string".

If you need to use a "double underscore" character inside a simple
templating pattern, you simply need to escape the underscore characters
using back-slash characters: __
For example, using the tag name my__N_stand in a simple templating
pattern would be: __=my__N_stand__
5 - 16 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
MODE INDEX

"formatter": "<formatting function>",

// Name of the JS function to call in order to format data. See formatting function signature

below.

"ref": "<reference name>",

// Should contain the name of an ancestor data-c8o-ref anchor (see "References use" on

page 5-33). The "find" selector or "index" mode will use the referenced XML data as

current context.

// Be aware that the reference name used here can only refer to a reference from the same

XML response. References from a response are kept until a new XML response arrives.

}__

FORMATTING FUNCTION SIGNATURE

The formatting function must follow this signature:

EXAMPLES

Examples of templating patterns are present in “Simple templating” on page 5 - 18 and in every

following section of HTML templating chapter.

SELECTING PATTERNS

Selecting patterns are those which can be used to select a list of nodes onto which to work or

to decide whether or not to render a part of HTML. This type of selector is used in data-c8o-

each attribute to select the iterated elements and in data-c8o-if and data-c8o-if-not

attributes to test the presence of elements.

Notes:

Use double quotes and not simple quotes in your JSON structure!
If you need to put this structure in a node attribute, use simple
quotes to delimit the attribute value and double quotes in the
enhanced JSON structure.

function(value) {

// "this" object provides the current DOM element, i.e. the

DOM element containing the templating pattern

// "value" parameter provides the current node value

(string or fragment, depending on the selected type)

// With string type, the function should return the new text

to display.

// With fragment type, the value is a "fragment" element

containing the "find" result. Return isn't mandatory.

Returning a string injects it instead of the fragment.

}

5 - 17

Chapter "Convertigo Templating Framework"
HTML templating
 In data-c8o-each, the current iterated item inside the selector’s result becomes the

reference element for templating,

 in data-c8o-if, the selector result does not become the reference element for

templating.

Selecting patterns can be of two types :

 Simple selecting pattern: <jQuery selector>

This pattern is composed of a jQuery selector.

It allows selecting a node list (possibly containing only one element) pointed by the jQuery

selector. It provides an empty node list if no result is found in the XML data.

Note: The current element can be selected by selector ".".

 Enhanced JSON structure selecting pattern: {<enhanced JSON selection

structure>}

This pattern is composed of a JSON structure: key/value string pairs surrounded by braces.

SELECTING PATTERN JSON STRUCTURE SPECIFICATION:

__{

"find": "<jquery selector>",

// Selects a node list of matched elements, including their descendants.

"ref": "<reference name>",

// Should contain the name of an ancestor data-c8o-ref anchor (see "References use" on

page 5-33). The "find" selector will use the referenced XML data as current context.

// Be aware that the reference name used here can only refer to a reference from the same

XML response. References from a response are kept until a new XML response arrives.

"mode": "find",

// Default mode is "find" for this type of pattern. "index" mode would not give any result.

}__

EXAMPLES

Examples of selecting patterns are present in “Conditional templating” on page 5 - 23 and in

“Iterative templating” on page 5 - 28.

5.4.2 Simple templating

The simple templating has as effect to render data selected from XML response inside HTML

elements. Templating is achieved by substititing a templating pattern (see "Templating

patterns" on page 5-15) by the matching XML data turned into a string.

Simple templating can be used inside any part of HTML code, on condition that a requestable

response is listened by a parent node, i.e. that a data-c8o-listen attribute is declared on

a parent element in HTML document (see "Listening for a C8O requestable response" on

page 5-12).
5 - 18 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
EXAMPLES

 Simple templating with a simple templating pattern:

This example declares a div HTML element listening to the GetData sequence of the current

project. When the sequence returns, the CTF will substitute __=myValue__ by the value

retrieved from the XML response by applying this jQuery selector. If not matching in the XML

response, the span is filled with an empty value.

With the following XML response:

The CTF will produce the following HTML:

 Simple templating combining several simple templating patterns:

This template declares an H1 HTML title element listening to the OpenWorkOrder sequence

of the current project. When the OpenWorkOrder sequence returns an XML response, the

CTF will substitute __=identifiant__ and __=description__ by their respective values

issued from JQuery selectors.

With the following XML response:

The CTF will produce the following HTML:

<div data-c8o-listen=".GetData">

__=myValue__

</div>

<document …>

<myNum>12.45</myNum>

<myValue>This is a sample text</myValue>

</document>

<div>

This is a sample text

</div>

<h1 data-c8o-listen=".OpenWorkOrder">

Work order #__=id__ - __=description__

</h1>

<document …>

<work_order>

<id>123456</id>

<description>First work order</description>

</work_order>

</document>
5 - 19

Chapter "Convertigo Templating Framework"
HTML templating
 Simple templating with a JSON structure templating pattern using a formatter function:

This example declares a div HTML element listening to the GetData sequence of the current

project. When the sequence returns, the CTF will display in a span, the myNum node value

after it has been changed by the formatNumber function.

With the following XML response:

The CTF will produce the following HTML:

 Simple templating combining several templating patterns (a simple templating pattern and

a JSON structure using formatter function):

<h1>

Work order #123456 - First work order

</h1>

<div data-c8o-listen=".GetData">

__{"find":"myNum", "formatter":"formatNumber"}__

</div>

<script>

function formatNumber(value) {

return value.replace(".", ",") + " €";

}

</script>

<document …>

<myNum>12.45</myNum>

<myValue>This is a sample text</myValue>

</document>

<div>

12,45 €

</div>
5 - 20 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
This example declares a div HTML element listening to the GetData sequence of the current

project. When the sequence returns, the CTF will display the myValue node value in a span

with a class name computed from the myNum node value using the getClass function.

With the following XML response:

The CTF will produce the following HTML:

5.4.3 Nested listeners

Nested listeners that would like to mix data are not recommended.

Each listener block should render data from the result it listens to, otherwise when rendering

the second data, the first one may be lost.

In case of HTML parts mixing data from several requestables, prefer using several serial

listeners.

Nested listeners using separated scope can work correctly.

EXAMPLE

The following template will not fully work as it mix data from two nested listeners:

<div data-c8o-listen=".GetData">

__=myValue__

</div>

<script>

function getId(value) {

if (value > 10)

return "bigBlock";

else

return "littleBlock";

}

</script>

<document …>

<myNum>12.45</myNum>

<myValue>This is a sample text</myValue>

</document>

<div>

This is a sample text

</div>
5 - 21

Chapter "Convertigo Templating Framework"
HTML templating
In this example, depending on which XML response arrives first, the second arriving

response’s rendering will overwrite the first response’s rendering.

Assuming that the GetData response XML arrives first, with the following XML response:

The p with myValue node and the id attribute computed from myNum node are rendered in

the HTML.

When the OpenWorkOrder response XML arrives, with the following XML response:

The p with id and description nodes is rendered. But the id attribute using myValue node

is also re-rendered, as it belongs to the listening div. As no myValue node is present in the

OpenWorkOrder response XML, it will be rendered empty.

A way of listening to both sequences responses using nested listeners with separated scopes

could be:

<div data-c8o-listen=".GetData">

 <p>__=myValue__</p>

 <div data-c8o-listen=".OpenWorkOrder">

<p>#__=id__ - __=description__</p>

 </div>

</div>

<document …>

<myNum>12.45</myNum>

<myValue>This is a sample text</myValue>

</document>

<document …>

<work_order>

<id>123456</id>

<description>First work order</description>

</work_order>

</document>

<div data-c8o-listen=".GetData">

<p>__=myValue__</p>

<p data-c8o-listen=".OpenWorkOrder">

#__=id__ - __=description__

</p>

</div>
5 - 22 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
In this case, it works only if the GetData response arrives before the OpenWorkOrder

response. Otherwise, a similar problem of losing rendered data will occur.

The preferred way of listening to both sequences responses separately is:

In this case, the id attribute cannot be computed from a sequence’s response and the data

inside it to be retrieved from another sequence’s response. It can be done using other CTF

methods but not simple listeners and simple templating.

5.4.4 Conditional templating

The conditional templating allows the developer to make a test in order to decide whether or

not to render a part of HTML.

Conditional templating attributes are presented in this section:

 CTF If

 Negative if

 Several conditions

CTF IF

The data-c8o-if attribute can be added to any HTML element in order to perform a test. It

can contain:

 a selecting pattern (see "Selecting patterns" on page 5-17): it is a simple jQuery selector

or a JSON structure pattern limited to find and ref ;

 or a function name.

If the condition present in the data-c8o-if attribute is validated, the piece of HTML inside

the element containing the data-c8o-if attribute is rendered.

Otherwise, if the condition is not validated, the element containing the data-c8o-if attribute

(and all sub HTML elements) is removed from the DOM.

CASE OF SELECTING PATTERN

When using a selecting pattern inside the data-c8o-if attribute, the condition is validated

when the selector returns a non empty list.

Otherwise, if the list is empty, the condition is not validated.

<div data-c8o-listen=".GetData">

<p>__=myValue__</p>

Something to display here

</div>

<p data-c8o-listen=".OpenWorkOrder">

#__=id__ - __=description__

</p>
5 - 23

Chapter "Convertigo Templating Framework"
HTML templating
Note: If the condition is validated, the list resulting from the selector does not become the

reference for elements rendered inside: the parent data-c8o-listen or data-c8o-each

remains the reference element for templating.

CASE OF FUNCTION

When using the function name inside the data-c8o-if attribute, the condition is validated if

the function returns true.

Otherwise, if it returns false, the condition is not validated.

The function should have the following signature:

EXAMPLES

 Conditional templating with simple selecting pattern:

This example declares a div HTML element listening to the GetData sequence of the current

project. When the sequence returns, if the jQuery selector is matching in the XML response,

i.e. if key node is present, the span and the p elements will be rendered. If not matching in the

XML response, the span is removed from its parent div.

With the following XML response:

function($doc, refs) {

// "this" object provides the current DOM element, i.e. the

DOM element containing the data-c8o-if attribute

// $doc is the jQuery object of the XML node currently

referenced for rendering

// refs is an object containing all XML references declared

in data-c8o-ref attributes

// refs object contains key/value pairs, key being the

reference name, and value being the jQuery object of matching

XML

// returns true or false

}

<div data-c8o-listen=".GetData">

<p>__=value__</p>

</div>
5 - 24 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
The CTF will produce the following HTML:

 Conditional templating with JSON structure selecting pattern:

This example declares a div HTML element listening to the GetData sequence of the current

project. When the sequence returns, if the JSON structure selecting pattern is matching in the

XML response, i.e. if key node is present, the span and the p elements will be rendered. If not

matching in the XML response, the span is removed from its parent div.

This would give the same exact result as the preceding example.

 Conditional templating with a function:

<document …>

<data>

<key>123456</key>

<value>This is a standard value</value>

</data>

</document>

<div>

<p>This is a standard value</p>

</div>

<div data-c8o-listen=".GetData">

<p>__=value__</p>

</div>
5 - 25

Chapter "Convertigo Templating Framework"
HTML templating
This example declares a div HTML element listening to the GetData sequence of the current

project. When the sequence returns, if the myDecidingFunction function returns true, i.e.

if key node is present in the response, the span and the p elements will be rendered. If the

function returns false, the span is removed from its parent div.

This would give the same exact result as the preceding example.

NEGATIVE IF

The data-c8o-if-not attribute works the same way as the data-c8o-if attribute but the

condition is validated in the inverted case as for the data-c8o-if.

CASE OF SELECTING PATTERN

When using a selecting pattern inside the data-c8o-if-not attribute, the condition is

validated when the selector does not match in the XML response.

Otherwise, if the selector matches a node list in the XML response, the condition is not

validated.

CASE OF FUNCTION

When using the function name inside the data-c8o-if-not attribute, the condition is

validated if the function returns false.

Otherwise, if it returns true, the condition is not validated.

EXAMPLE

This example completes the first example of the conditional templating (see "Examples" on

page 5-24).

<div data-c8o-listen=".GetData">

<p>__=value__</p>

</div>

<script>

function myDecidingFunction($doc, refs) {

if ($doc.find("key").length)

return true;

return false;

}

</script>
5 - 26 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
A second span HTML element declares a data-c8o-if-not condition, with the same

jQuery selector as the data-c8o-if: it manages the inverse case, when the key node is not

present in the XML response.

When the sequence returns, if key node is present, the span with the p element containing

the value node content will be rendered. If key node is not present in the XML response, the

second span with the p element containing a default text is rendered.

With the following XML response:

The CTF will produce the following HTML:

With the following XML response:

The CTF will produce the following HTML:

<div data-c8o-listen=".GetData">

<p>__=value__</p>

<p>No valid data to display</p>

</div>

<document …>

<data>

<key>123456</key>

<value>This is a standard value</value>

</data>

</document>

<div>

<p>This is a standard value</p>

</div>

<document …>

<data/>

</document>
5 - 27

Chapter "Convertigo Templating Framework"
HTML templating
SEVERAL CONDITIONS

When several conditions need to be validated on a same HTML element, a Convertigo

developer can use two methods:

 One data-c8o-if attribute and one data-c8o-if-not attribute can be declared on a

same element. They are two different attributes, HTML only prevents from using a same

attribute several times in the same element. In this case, both conditions have to be

validated in order to render the internal elements. If one of the conditions is not validated,

the whole element is removed from the DOM.

 If the conditions you need to combine are more complex, simply use the function name in

the data-c8o-if attribute. In JavaScript code, all tests can be combined.

5.4.5 Iterative templating

The iterative templating allows the developer to build a table, a list, or more generally a

structure based on an iterative build process. To do so, the CTF defines the data-c8o-each

attribute, which can contain a selecting pattern (see "Selecting patterns" on page 5-17): it is a

simple jQuery selector or a JSON structure pattern limited to find and ref. The iteration is

performed on the list of nodes resulting from the application of the selector on the XML

response.

Notes:

 The currently iterated node becomes the reference XML jQuery object for elements

rendered in HTML sub elements.

 Inside the iteration, use the "." selector to refer to this currently iterated node.

EXAMPLE

Let’s have the following template:

<div>

<p>No valid data to display</p>

</div>
5 - 28 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
With the following XML reponse:

The CTF will produce the following HTML:

<div data-c8o-listen=".GetLabors">

<table>

<thead>

<tr>

<th>Task</th>

<th>Labor</th>

<th>Name</th>

<th>Approved</th>

</tr>

</thead>

<tbody data-c8o-each="labors>labor">

<tr>

<td>__=task__</td>

<td>__=labor__</td>

<td>__=name__</td>

<td>__=approved__</td>

</tr>

</tbody>

</table>

</div>

<document …>

<labors>

<labor>

<type>type1</type>

<task>Task for engine</task>

<labor>engine management</labor>

<name>Labor1</name>

<approved>true</approved>

</labor>

<labor>

<type>type2</type>

<task>Task for house</task>

<labor>house management</labor>

<name>Labor2</name>

<approved>false</approved>

</labor>

</labors>

</document>
5 - 29

Chapter "Convertigo Templating Framework"
HTML templating
5.4.6 Nested iterations

Nested iterations are allowed and help handling responses that provide multi dimensional

data, i.e. iteration can be handled for possibly multidimensional list and arrays. To do so, a

data-c8o-each attribute can be used inside another data-c8o-each attribute, and can

contain a selecting pattern (see "Selecting patterns" on page 5-17) with a selector relative to

the current iterated item from parent data-c8o-each.

EXAMPLE

Let’s have the following template:

Beware that inside the nested iteration, selectors can only be
relative to the current iteration.
In the example below, inside data-c8o-each="labors>labor", no
templating pattern can directly access to data from the parent
iteration data-c8o-each="tasks>task".
To access to data from parent iteration, you need to use references
(see "References use" on page 5-33).

<div>

<table>

<thead>

<tr>

<th>Task</th>

<th>Labor</th>

<th>Name</th>

<th>Approved</th>

</tr>

</thead>

<tbody>

<tr>

<td>Task for engine</td>

<td>engine management</td>

<td>Labor1</td>

<td>true</td>

</tr>

<tr>

<td>Task for house</td>

<td>house management</td>

<td>Labor2</td>

<td>false</td>

</tr>

</tbody>

</table>

</div>
5 - 30 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
With the following XML reponse:

<div data-c8o-listen=".GetTasks">

<table>

<thead>

<tr>

<th>Task</th>

<th>Labors</th>

<th>Approved</th>

</tr>

</thead>

<tbody data-c8o-each="tasks>task">

<tr>

<td>

__=task_type__ - __=task_name__

</td>

<td data-c8o-each="labors>labor">

__=labor_type__ - __=labor_name__

</td>

<td>__=approved__</td>

</tr>

</tbody>

</table>

</div>
5 - 31

Chapter "Convertigo Templating Framework"
HTML templating
The CTF will produce the following HTML:

<document …>

 <tasks>

<task>

<task_type>type1</task_type>

<task_name>Task for engine</task_name>

<labors>

<labor>

<labor_type>engine management</labor_type>

<labor_name>Labor1</labor_name>

</labor>

<labor>

<labor_type>engine management</labor_type>

<labor_name>Labor2</labor_name>

</labor>

</labors>

<approved>true</approved>

</task>

<task>

<task_type>type2</task_type>

<task_name>Task for house</task_name>

<labors>

<labor>

<labor_type>house management</labor_house>

<labor_name>Labor3</labor_name>

</labor>

<labor>

<labor_type>house management</labor_house>

<labor_name>Labor4</labor_name>

</labor>

</labors>

<approved>false</approved>

</task>

 </tasks>

</document>
5 - 32 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
5.4.7 References use

A reference anchor can be declared using the data-c8o-ref attribute. It can be added on

the same element as a data-c8o-listen or data-c8o-each attribute. The data-c8o-

ref attribute:

 declares an anchor name which is the value set in the data-c8o-ref attribute,

 and saves the current context XML element (i.e. the XML element used as current XML for

the data-c8o-listen or data-c8o-each attribute next to which it is declared) for

further use.

When templating an iteration, if you need to refer to an element of a parent listen or a parent

<div>

<table>

<thead>

<tr>

<th>Task</th>

<th>Labors</th>

<th>Approved</th>

</tr>

</thead>

<tbody>

<tr>

<td>

type1 - Task for engine

</td>

<td>

engine management - Labor1

engine management - Labor2

</td>

<td>true</td>

</tr>

<tr>

<td>

type2 - Task for house

</td>

<td>

house management - Labor3

house management - Labor4

</td>

<td>false</td>

</tr>

</tbody>

</table

</div>
5 - 33

Chapter "Convertigo Templating Framework"
HTML templating
iteration (in case of nested iterations), a declared reference can be used in a JSON structure

templating pattern: the selector must contain the ref key with the name of the reference you

want to use.

A data-c8o-each can also refer an ancestor data-c8o-ref in its selector, using a a JSON

structure selecting pattern.

EXAMPLES

 Reference use in templating pattern:

Let’s have the following template:

With the following XML:

Be aware that the reference name used in a pattern can only refer to
a reference from the same XML response.
References from a response are kept until a new XML response
arrives.

<div data-c8o-listen=".GetLabors" data-c8o-ref="labors">

 <table>

<thead>

<tr>

<th>Task</th>

<th>Labor</th>

</tr>

</thead>

<tbody data-c8o-each="labors>labor">

<tr title='For

__{"ref":"labors", "find":"details>name"}__'>

<td>__=task__</td>

<td>__=labor__</td>

</tr>

</tbody>

 </table>

</div>
5 - 34 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
The CTF will produce the following HTML:

<document …>

<details>

<name>Monday labors</name>

<count>2</count>

</details>

<labors>

<labor>

<type>type1</type>

<task>Task for engine</task>

<labor>engine management</labor>

<name>Labor1</name>

<approved>true</approved>

</labor>

<labor>

<type>type2</type>

<task>Task for house</task>

<labor>house management</labor>

<name>Labor2</name>

<approved>false</approved>

</labor>

</labors>

</document>

<div>

 <table>

<thead>

<tr>

<th>Task</th>

<th>Labor</th>

</tr>

</thead>

<tbody>

<tr tile="For Monday labors">

<td>Task for engine</td>

<td>engine management</td>

</tr>

<tr tile="For Monday labors">

<td>Task for house</td>

<td>house management</td>

</tr>

</tbody>

 </table>

</div>
5 - 35

Chapter "Convertigo Templating Framework"
HTML templating
 Reference use in selecting pattern:

Let’s have the following template:

With the same XML as previous example:

<div data-c8o-listen=".GetLabors" data-c8o-ref="labors">

 <table>

<thead>

<tr>

<th>Title</th>

<th>Task</th>

<th>Labor</th>

</tr>

</thead>

<tbody data-c8o-each="labors>labor">

<tr>

<td data-c8o-each='{"ref":"labors",

"find":">details>*"}'>

__=.__

</td>

<td>__=task__</td>

<td>__=labor__</td>

</tr>

</tbody>

 </table>

</div>
5 - 36 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
The CTF will produce the following HTML:

<document …>

<details>

<name>Monday labors</name>

<count>2</count>

</details>

<labors>

<labor>

<type>type1</type>

<task>Task for engine</task>

<labor>engine management</labor>

<name>Labor1</name>

<approved>true</approved>

</labor>

<labor>

<type>type2</type>

<task>Task for house</task>

<labor>house management</labor>

<name>Labor2</name>

<approved>false</approved>

</labor>

</labors>

</document>
5 - 37

Chapter "Convertigo Templating Framework"
HTML templating
5.4.8 Late rendering

The CTF enables a late rendering feature, which allows to render parts of HTML marked as

delayed only when a user click on a specific element happens (and not when the response

arrives).

To do so, the CTF declares the data-c8o-late-render and data-c8o-render

attributes. These attributes work by pair and are linked if they contain the same value. This

value can be first rendered by the CTF (i.e. interpreted from a pattern, for example

__=selector__).

HOW DOES IT WORK ?

The data-c8o-late-render attribute marks an element as delayed to be rendered. The

CTF finds these elements and removes their content from the HTML DOM.

When an element with a data-c8o-render attribute containing the same value is clicked,

the CTF:

<div>

 <table>

<thead>

<tr>

<th>Title</th>

<th>Task</th>

<th>Labor</th>

</tr>

</thead>

<tbody>

<tr>

<td>

Monday labors

2

</td>

<td>Task for engine</td>

<td>engine management</td>

</tr>

<tr>

<td>

Monday labors

2

</td>

<td>Task for house</td>

<td>house management</td>

</tr>

</tbody>

 </table>

</div>
5 - 38 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
 retrieves the content of the element marked as delayed,

 performs a rendering on it with the initial XML context element,

 and displays it in the HTML.

This late rendering can be very useful in case of very large data: the browser can be very slow

if too many elements are present, so a late rendering can limit the amount of elements to

render (for instance by JQuery Mobile UI library) at a given time.

EXAMPLES

 Simple late rendering:

Let’s have the following template:

With the following XML:

The CTF will produce the following HTML:

When the user clicks on the "Display more for: Monday labors" div, the CTF updates the HTML

with the following changes:

<div data-c8o-listen=".GetDetails">

<div data-c8o-render="displayMore">

Display more for:__=name__

</div>

<div data-c8o-late-render="displayMore">

<div>Details:

__=details__</div>

<div>

</div>

<document …>

<name>Monday labors</name>

<details>This is the details for monday labors.</details>

</document>

<div>

<div data-c8o-render="displayMore">

Display more for:Monday labors

</div>

<div data-c8o-late-render="displayMore">

</div>

</div>
5 - 39

Chapter "Convertigo Templating Framework"
HTML templating
 Late rendering inside an iteration:

Let’s have the following template:

The index mode is used to generate a unique attribute value per iteration and link the data-

c8o-render and data-c8o-late-render attributes by pairs.

With the following XML:

<div>

<div data-c8o-render="displayMore">

Display more for:Monday labors

</div>

<div data-c8o-late-render="displayMore">

<div>Details:

This is the details for monday labors.</div>

<div>

</div>

<div data-c8o-each="entries>entry">

<div data-c8o-render='displayMore___{"mode":"index"}__'>

Display more for:__=name__

</div>

<div data-c8o-late-render=

'displayMore___{"mode":"index"}__'>

<div>Details:

__=details__</div>

<div>

</div>
5 - 40 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
The CTF will produce the following HTML:

When the user clicks on the "Display more for: Tuesday labors" div, corresponding to

displayMore_2 attribute value, the CTF updates the HTML with the following changes:

<document …>

 <entries>

<entry>

<name>Monday labors</name>

<details>This is the details for monday labors.</details>

</entry>

<entry>

<name>Tuesday labors</name>

<details>This is the details for tuesday labors.</details>

</entry>

<entry>

<name>Thursday labors</name>

<details>This is the details for thursday labors.</details>

</entry>

 </entries>

</document>

<div>

<div data-c8o-render="displayMore_1">

Display more for:Monday labors

</div>

<div data-c8o-late-render="displayMore_1">

</div>

<div data-c8o-render="displayMore_2">

Display more for:Tuesday labors

</div>

<div data-c8o-late-render="displayMore_2">

</div>

<div data-c8o-render="displayMore_3">

Display more for:Thursday labors

</div>

<div data-c8o-late-render="displayMore_3">

</div>

</div>
5 - 41

Chapter "Convertigo Templating Framework"
HTML templating
5.4.9 Before rendering callback

The data-c8o-before-rendering attribute provides a way to manipulate XML response

from C8O call before data rendering. It contains the name of a JavaScript function that is

executed at response reception.

The data-c8o-before-rendering attribute can only be added on the same element as a

data-c8o-listen attribute and the function is executed only if the data-c8o-listen-

condition is validated.

The before rendering function must follow this signature:

<div>

<div data-c8o-render="displayMore_1">

Display more for:Monday labors

</div>

<div data-c8o-late-render="displayMore_1">

</div>

<div data-c8o-render="displayMore_2">

Display more for:Tuesday labors

</div>

<div data-c8o-late-render="displayMore_2">

<div>Details:

This is the details for tuesday labors.</div>

</div>

<div data-c8o-render="displayMore_3">

Display more for:Thursday labors

</div>

<div data-c8o-late-render="displayMore_3">

</div>

</div>

function onBeforeRendering($doc, c8oData){

// $doc is the jQuery object of the C8O XML response

// c8oData is an object containing all parameters sent to the

request

// c8oData object contains key/value pairs, key being the

variable/parameter name, value being the value

// "this" is the DOM element containing the data-c8o-listen

attribute

}

5 - 42 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
EXAMPLE

5.4.10 After rendering callback

After the CTF has rendered all the templates, it is sometimes useful to execute some additional

code, for instance to refresh a GUI component such as JQuery Mobile ones. Standard "after

rendering" callbacks are included in the CTF in order to handle all "standard" JQuery Mobile

widgets.

For other purpose, the CTF adds a data-c8o-after-rendering attribute that provides a

way to manipulate HTML DOM after the CTF has rendered data. It contains the name of a

JavaScript function that is executed after rendering.

The after rendering function must follow this signature:

<div data-c8o-listen=".GetList"

data-c8o-before-rendering="onBeforeRendering">

...

</div>

<script>

function onBeforeRendering($doc, c8oData) {

var $this = $(this);

// work with $this, $doc...

}

</script>

function onAfterRendering($doc, c8oData){

// $doc is the jQuery object of the C8O XML response

// c8oData is an object containing all parameters sent to the

request

// c8oData object contains key/value pairs, key being the

variable/parameter name, value being the value

// "this" is the DOM element containing the data-c8o-listen

attribute

}

5 - 43

Chapter "Convertigo Templating Framework"
HTML templating
EXAMPLE

5.4.11 Inline templating

Sometimes HTML attributes have to be rendered with dynamic data: at design time (before

rendering), the content will not be valid HTML. Especially in case of HTML templates used in

iterations, the HTML nodes of the templates are present only for the CTF, but not for a GUI

library such as JQuery mobile.

These attributes should not be really declared at design time, but only declared at run-time,

when rendered.

To do so, you can use the data-c8o-use-<xxx> attribute, <xxx> being the attribute name

you want to dynamically declare at run-time.

Once the CTF has rendered elements according to the received XML data, the data-c8o-

use-<xxx> attributes are rendered but replacing them with the real attribute.

When using data-c8o-use-<xxx> attribute, do not forget to add the data-c8o-use

marker attribute (data-c8o-use="on"). This special attribute allows the CTF to quickly find

nodes with data-c8o-use-<xxx> attributes.

EXAMPLE

 Simple data-c8o-use:

This will render as:

 Rendered value with data-c8o-use:

<div data-c8o-listen=".GetList"

data-c8o-after-rendering="onAfterRendering">

...

</div>

<script>

function onAfterRendering($doc, c8oData) {

// work with HTML DOM...

}

</script>

<div data-c8o-listen=".GetData">

<div data-c8o-use="on" data-c8o-use-class="surrounded"/>

</div>

<div data-c8o-listen=".GetData">

<div class="surrounded"/>

</div>
5 - 44 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
HTML templating
In this example, a class attribute needs to be computed with data received from XML

response. Before rendering with data from the GetData sequence, the class attribute is not

valid: it contains a templating pattern. This is why the data-c8o-use attribute is used. When

the sequence returns, the CTF will render and replace the attribute with a valid class name

computed using the getClass function.

With the following XML response:

The CTF will produce the following HTML:

<div data-c8o-listen=".GetData">

<span data-c8o-use="on"

data-c8o-use-<class>='__{"find":"myNum","formatter":"getClass"}__'>

__=myValue__

</div>

<script>

function getClass(value) {

if (value > 10)

return "black";

else

return "red";

}

</script>

<document …>

<myNum>12.45</myNum>

<myValue>This is a sample text</myValue>

</document>

<div>

This is a sample text

</div>
5 - 45

Chapter "Convertigo Templating Framework"
Routing
5.5 Routing

This section presents the routing module of Convertigo Templating Framework:

 Presentation

 Routing table

5.5.1 Presentation

The routing module is responsible for automatically navigate through screens according to

C8O call responses.

For instance, let's talk about a login screen. A standard behavior would be to:

1 Submit the form on a C8O sequence with relevant parameters,

2 Analyze the sequence’s XML response,

3 Route to the relevant screen according to the result: if the login is successful, go to the

main screen; otherwise, go to the error screen

The CTF allows the C8O programmer to describe all these actions, without writing one line of

code.

Changing screen means passing from one HTML page to another. It can be considered as a

simple HTML page move (in a pure web application context) or also as a jQuery Mobile screen

change.

5.5.2 Routing table

The routing table is a JavaScript table that lists the route definitions for C8O requestable

responses. A route definition is a JavaScript object describing what to do (actions) when a

C8O requestable response returns.

ROUTING TABLE STRUCTURE SPECIFICATION:

The routing table table must follow this structure:
5 - 46 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
Routing
The calledRequest parameter can define a list of requestables and is described using the

same format as requestables in data-c8o-listen attributes (see "Listener concept" on

page 5-12).

The following table explains in details the possible parameters of each action.

[

// routing table : table of "route definition" objects

 {

calledRequest: "<the called C8O requestables>",

// indicates on which requestable results the actions occur

actions: [

// table of possible actions for this(these) called request(s)

{

afterRendering: function ($doc, c8oData) {

},

beforeRendering: function ($doc, c8oData) {

},

condition: "<jQuery selector>",

or condition: <function name>,

or condition: function ($doc, c8oData) {

...

return true;

},

fromPage: "<pageIds>",

goToPage: "<pageId>",

options: {

...

}

}

]

 }

]

5 - 47

Chapter "Convertigo Templating Framework"
Routing
Table 5 - 2: Routing Table Action Parameters

Parameter Description

condition A condition used to decide whether the action should apply or not.
The condition can be:
• a jQuery selector applied on the requestable XML response,
• or a JavaScript function (function name or inline declared function).
The condition is considered as validated if the jQuery selector returns a non empty list, or
if the JavaScript function returns true.

The condition function must have the following signature:
function($doc, c8oData) {
 // $doc is the jQuery object of the XML document
 // c8oData is an object containing all parameters sent to the
 request
 // c8oData object contains key/value pairs, key being the
 variable/parameter name, value being the value
 // returns true of false
}

The condition function is called before the page changes.

fromPage A list of comma separated HTML element IDs, defining the page(s) the application came
from before calling the C8O requestable.
fromPage : "#page1, #page2, #page3"

The fromPage list of pages is used as a condition to decide whether the action should
apply or not.

This parameter is useful to route to different pages according to the origin page.

Technically, the page IDs are tested using the .is(selector) method from jQuery.

goToPage An HTML element ID, or an HTML page, to be displayed after the C8O response has
arrived.

If not present, it means a local rendering (i.e. in the same page).

Note: JQueryMobile multipage mode is not currently supported.

options An optional transition information (matching the jQueryMobile transition object
format) used to display the page targetted in the goToPage parameter.

beforeRendering JavaScript function called before the rendering process, after the page changes.

The beforeRendering function must have the following signature:
function($doc, c8oData) {
 // $doc is the jQuery object of the XML document
 // c8oData is an object containing all parameters sent to the
 request
 // c8oData object contains key/value pairs, key being the
 variable/parameter name, value being the value
}

afterRendering JavaScript function called after the rendering process, after the beforeRendering
function.

The afterRendering function must have the following signature:
function($doc, c8oData) {
 // $doc is the jQuery object of the XML document
 // c8oData is an object containing all parameters sent to the
 request
 // c8oData object contains key/value pairs, key being the
 variable/parameter name, value being the value
}

5 - 48 Reference Manual - CEMS 7.2.0

Chapter "Convertigo Templating Framework"
Routing
EXAMPLE

$.extend(true, C8O, {

routingTable: [

 {

calledRequest: ".Login",

actions: [

{

condition: "status:contains('1')",

goToPage: "openworkorder.html",

options: { transition: "none" }

},

{

condition: function ($doc) {

if ($doc.find("status:contains('true')").length != 0)

return true;

else

return false;

},

goToPage: "#page1",

options: { transition : "none" }

},

{

condition: ">error",

goToPage: "#Login",

options: { transition : "slide" }

}

]

 },

 {

calledRequest: ".OpenWorkOrder",

actions: [

{

condition: "Name",

goToPage: "tasks.html",

options: { transition: "none" }

},

{

condition: "status:contains('0')",

goToPage: "error.html",

options: { transition: "pop" }

}

]

 }

]});
5 - 49

Chapter "Convertigo Templating Framework"
Routing
5 - 50 Reference Manual - CEMS 7.2.0

6 Internationalization
framework

This chapter introduces the Convertigo Internationalization Library, concepts and purpose.

 Convertigo Internationalization Library

 Dictionary content

 Translating

 Enable I18N and language configuration

 Language detection and configuration
6 - 1

Chapter "Internationalization framework"
Convertigo Internationalization Library
6.1 Convertigo Internationalization Library

This section introduces the Convertigo Internationalization Library:

 Objectives

 Translation

 Project architecture

6.1.1 Objectives

The Convertigo Internationalization library (I18N lib) aims at helping Convertigo programmers

to display their application in the client language. Thanks to this library, all the strings displayed

in an application will appear in a specific language.

6.1.2 Translation

The translation is based on substitution:

 Words and sentences to be translated are declared directly in the HTML source or added

dynamically through JavaScript code.

 The I18N lib uses a dictionary to translate the given words or sentences into the target

language.

A separate dictionary is needed for each different language in order to perform the substitution

efficiently. Indeed, the Convertigo server is not the best place to do the translation. The client

(browser or mobile) must be able to do the translation for all local strings and dynamic events.

To be efficient, the client only loads the correct dictionary for the currently needed language. It

is not necessary to load all the languages and use only one. This is why there is one dictionary

file per language.

Strings to translate in the HTML code are handled directly in memory, at document loading.

That means the language cannot be changed on the fly.

6.1.3 Project architecture

The dictionary files (one per language) are attached to the Convertigo project responsible for

the application user interface. Next to the application HTML code (index.html, app.html,

…), the dictionnaries are created in an i18n folder.

A dictionary is a JSON file in the i18n folder. The file name should be the language code (2

chars from ISO 639-1) or some custom name (but then the I18N lib would need a custom

management).

EXAMPLE

Content of the resources folder in a Convertigo UI project:

 DisplayObjects/mobile/

 index.html

 i18n/
6 - 2 Reference Manual - CEMS 7.2.0

Chapter "Internationalization framework"
Convertigo Internationalization Library
• en.json

• fr.json

• es.json

• …

For desktop or mobile web application, the dictionary is downloaded and may be cached by

the browser. For installed mobile application, the dictionary is local and no download is needed

(like any other resource).
6 - 3

Chapter "Internationalization framework"
Dictionary content
6.2 Dictionary content

This section presents the dictionary file content.

As already said in “Translation” on page 6 - 2, there is one dictionary file by language, each

one being a dedicated true JSON file.

The JSON format is very important so that the I18N lib can read the dictionary (the I18N lib uses

a JSON parser, very strict).

The JSON format is also very simple: the dictionary content only needs a one level key/value

list: keys must be the same for each language, values should be localized strings.

In addition to the key names, for several language files, the followings are also important to

respect in the JSON structure:

 start and end braces,

 double quotes for keys and values (no simple quotes),

 escape double quotes in keys and values with a backslash ("quote\"sample"),

 use \n for new line in keys and values,

 each key/value pair must be comma separated,

 not put a comma after the last key/value pair,

 dictionary must use the same encoding than the application HTML file (often UTF-8).

The followings are not important:

 key order,

 blank spaces in the structure,

 new lines in the structure.

EXAMPLE

 for en.json:

 for fr.json:

{

"welcomeMessage":"Welcome in the I18N documentation",

"nextButton":"Learn more"

}

{

"welcomeMessage":"Bienvenue dans la documentation I18N",

"nextButton":"En savoir plus"

}

6 - 4 Reference Manual - CEMS 7.2.0

Chapter "Internationalization framework"
Translating
6.3 Translating

This section presents the I18N library translating behaviors:

 Translating HTML

 Dynamically translating string or fragment in JavaScript

6.3.1 Translating HTML

The I18N lib automatically translates the HTML page at document loading time. The HTML

source must contain I18N-ready strings. These I18N strings can be in any text node or any

attribute value. If the key is not found in the dictionary, the key text is directly used.

An I18N string must follow this format:

__MSG_<key>__

The key part is the key defined in the dictionary entry.

EXAMPLE

Let’s have the following HTML source:

Using the en.json dictionary file previously described, the HTML will render:

Using the fr.json dictionary file previously described:

<div>

<p>__MSG_welcomeMessage__</p>

<button title="__MSG_nextButton__">

< __MSG_nextButton__ >

</button>

<p>__MSG_falseKey__</p>

</div>

<div>

<p>Welcome in the I18N documentation</p>

<button title="Learn more">

< Learn more >

</button>

<p>falseKey</p>

</div>
6 - 5

Chapter "Internationalization framework"
Translating
6.3.2 Dynamically translating string or fragment in JavaScript

Some strings are not part of the static application and may come from service responses or

may be JavaScript messages (wrong password, unreachable server, …). These strings are

displayed at runtime, the standard I18N translation process cannot appply.

To dynamically translate strings at runtime, the I18N lib provides a translate function, used

in the two following cases:

 Translating string

 Translating HTML fragment

TRANSLATING STRING

The C8O.translate function takes a string as input variable, corresponding to a key from

the dictionary, and returns the corresponding value for the currently used dictionary.

If the key is not found in the dictionary, the key is returned.

EXAMPLE

When called in JavaScript, this piece of code would display "Welcome in the I18N

documentation" when the currently used dictionary is en.json.

TRANSLATING HTML FRAGMENT

The C8O.translate function can also take a raw HTML fragment in parameter. This would

have as effect to:

 walk every text node and attribute value from the HTML fragment,

 and replace in these strings all __MSG_key__ patterns by the corresponding translated

string (or key when it is not found in dictionary).

EXAMPLE

Usage with the CTF, the translate function can be used to format a fragment in a formatter

function:

<div>

<p>Bienvenue dans la documentation I18N</p>

<button title="En savoir plus">

< En savoir plus >

</button>

<p>falseKey</p>

</div>

var translated = C8O.translate("welcomeMessage");

alert(translated);
6 - 6 Reference Manual - CEMS 7.2.0

Chapter "Internationalization framework"
Translating
function ctfFormatter(fragment) {

 C8O.translate(fragment);

}

6 - 7

Chapter "Internationalization framework"
Enable I18N and language configuration
6.4 Enable I18N and language configuration

If you decide to use the I18N library features in your project, it must be enabled in the project’s

custom.js file.

The following section from custom.js must be un-commented and configured:

C8O.ro_vars.i18n_files is a read-only list of available languages for the application. This

table must be filled with data in the source code and cannot be dynamically updated (as it is a

read-only variable).

Once the I18N lib is activated, the application resources must have an i18n folder with one

dictionary file per language (like i18n/en.json for english dictionary).

EXAMPLE

The following lines of code allow to declare three languages (english, french and spanish), with

english as default language:

This assumes that i18n/en.json, i18n/es.json and i18n/fr.json files exist in the

project and i18n/en.json will be used by default if the current language isn’t 'es' or 'fr'.

The first language of the list is the default language. It is the language
always used when a language is not found in the table.

We recommand to follow the ISO 639-1 codes for representing the
language, see http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

You can also use any string for identifying the language dictionaries, but
the language detection will not work automatically. You will have to use
custom code, see "Language detection and configuration" on page 6-9.

ro_vars: {

i18n_files: []

},

ro_vars: {

i18n_files: ["en", "es", "fr"]

},
6 - 8 Reference Manual - CEMS 7.2.0

Chapter "Internationalization framework"
Language detection and configuration
6.5 Language detection and configuration

The translation being done as soon as possible after the document is loaded, the current

language must be detected before. Find here the two ways of language detection in I18N

library:

 Automatic language detection

 Manual language configuration

 General principle of language detection

AUTOMATIC LANGUAGE DETECTION

By default, the language code (from ISO 639-1) is extracted from the user-agent. This is

done by the C8O.getBrowserLanguage() function that is automatically called during I18N

translation process.

In this case, the C8O.init_vars.i18n variable should remain empty in the custom.js file

of the application:

MANUAL LANGUAGE CONFIGURATION

MANUALLY DEFINING A LANGUAGE

The language can be manually configured, using the C8O.init_vars.i18n variable.

This variable is empty by default, meaning that the I18N library should use the automatic

language detection. But it can be customized in the custom.js file of the application.

When the C8O.init_vars.i18n variable is filled with a non-empty value, the automatic

detection of the language is disabled, and the language defined in this variable is used for

translation.

EXAMPLE

CHANGING THE CURRENT LANGUAGE USING A PARAMETER

In both cases, when the automatic detection is activated or disabled, the current language can

be passed using the __i18n parameter in the query string or in the hash query.

EXAMPLE

 .../myProject/index.html?param1=v1&__i18n=es¶m2=v2

 .../myProject/index.html#param1=v1&__i18n=es¶m2=v2

init_vars: {

i18n: ""

},

init_vars: {

i18n: "en"

},
6 - 9

Chapter "Internationalization framework"
Language detection and configuration
CHANGING THE LANGUAGE USING JAVASCRIPT CODE

In both cases, when the automatic detection is activated or disabled, the current language can

be determined by the get_language hook, available in the custom.js file.

This JavaScript hook is called previously to the translation process. The string returned by this

get_language hook function determines the current language for translation. This can be

helpful if you want to redirect some user-agents/languages to a common language for

translation.

If the hook does not return a string usable as language code, the default behavior is executed,

depending on the other configurations made in the custom.js file.

EXAMPLE

This example hook will use a language that is stored in local storage, when available.

GENERAL PRINCIPLE OF LANGUAGE DETECTION

In all cases of language detection/configuration, the detected language should be present in

the C8O.ro_vars.i18n_files array of languages, as described in “Enable I18N and

language configuration” on page 6 - 8.

If not present, the first entry, i.e. the default language, is used.

The whole language detection process works in the following order:

 get_language hook, can return a string to use as language code,

 __i18n parameter value in query string or hash query,

 C8O.init_vars.i18n variable value, is filled with a non-empty value,

 C8O.getBrowserLanguage() function, that automatically detects the language from

the user-agent.

C8O.addHook("get_language", function (params) {

if (localStorage) {

var lang = localStorage["language"];

if (typeof lang == "string") {

return lang;

}

}

});
6 - 10 Reference Manual - CEMS 7.2.0

Appendixes

This chapter contains all appendixes related to the Reference Manual:

 Keycodes table

 Date format - Usable symbols

 Convertigo paths variables - Usable symbols

 Legacy emulator actions table
A - 1

Chapter "Appendixes"
Keycodes table
A.1 Keycodes table

This appendix contains the list of keycodes Convertigo can send to any HTML object through

a Key statement.

Table A - 1: Keycode table

Key Pressed Javascript KeyCode

backspace 8

tab 9

enter 13

shift 16

ctrl 17

alt 18

pause/break 19

caps lock 20

escape 27

page up 33

page down 34

end 35

home 36

left arrow 37

up arrow 38

right arrow 39

down arrow 40

insert 45

delete 46

0 48

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

a 65

b 66

c 67
A - 2 Reference Manual - CEMS 7.2.0

Chapter "Appendixes"
Keycodes table
d 68

e 69

f 70

g 71

h 72

i 73

j 74

k 75

l 76

m 77

n 78

o 79

p 80

q 81

r 82

s 83

t 84

u 85

v 86

w 87

x 88

y 89

z 90

left window key 91

right window key 92

select key 93

numpad 0 96

numpad 1 97

numpad 2 98

numpad 3 99

numpad 4 100

numpad 5 101

numpad 6 102

numpad 7 103

numpad 8 104

numpad 9 105

Table A - 1: Keycode table (...)

Key Pressed Javascript KeyCode
A - 3

Chapter "Appendixes"
Keycodes table
multiply 106

add 107

subtract 109

decimal point 110

divide 111

f1 112

f2 113

f3 114

f4 115

f5 116

f6 117

f7 118

f8 119

f9 120

f10 121

f11 122

f12 123

num lock 144

scroll lock 145

semi-colon 186

equal sign 187

comma 188

dash 189

period 190

forward slash 191

grave accent 192

open bracket 219

back slash 220

close bracket 221

single quote 222

Table A - 1: Keycode table (...)

Key Pressed Javascript KeyCode
A - 4 Reference Manual - CEMS 7.2.0

Chapter "Appendixes"
Date format - Usable symbols
A.2 Date format - Usable symbols

This appendix contains the list of usable symbols for formatting dates.

Date and time formats are specified by date and time pattern strings. Within date and time

pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted as pattern

letters representing the components of a date or time string.

Text can be quoted using single quotes (') to avoid interpretation. "''" represents a single

quote. All other characters are not interpreted; they're simply copied into the output string

during formatting or matched against the input string during parsing.

The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' to 'z'

are reserved):

Table A - 2: Date format - Usable Symbols

G Era designator Text AD

y Year Year 1996 & 96

M Month in year Month July & Jul & 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday & Tue

a Am/pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am/pm (0-11) Number 0

h Hour in am/pm (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time zone Pacific Standard Time & PST & GMT-
08:00

Z Time zone RFC 822 time zone -0800
A - 5

Chapter "Appendixes"
Convertigo paths variables - Usable symbols
A.3 Convertigo paths variables - Usable symbols

This appendix contains the list of Convertigo paths variables available in Site Clipper objects

using replacement strings.

In replacement string properties, you can use specific symbols, that will allow you to compute

in runtime some well known paths.

The following symbols are available:

 In order to use such symbols, just add $<symbol>$ into your replacement string value. You

can use as many symbols as you want and at any location.

All symbols are computed accordingly to the current project/connector/context.

You can use them in order to make the objects using replacement strings more maintainable

and simplier. This is also useful because you do not have to deal with project name (it can

change for instance between a development environment and a production one). This makes

your string replacements dynamic.

EXAMPLES

Let's say Convertigo receives the following Site Clipper request:

The previously described variables are computed with the following values:

 $project_path$ =

"/convertigo/projects/my_project"

 $siteclipper_path$ =

"/convertigo/projects/my_project/

connector=my_connector,context=my_context.siteclipper"

 $host_path$ =

"/convertigo/projects/my_project/

connector=my_connector,context=my_context.siteclipper/http/

remote_host,18080"

Table A - 3: Convertigo paths variables - Usable Symbols

Variable name Retreived value

project_path retrieves the path to your current project

siteclipper_path retrieves the Site Clipper path

host_path retrieves the Site Clipper path and the target host path
(without the resource path)

tail_path retrieves the Site Clipper path, the target host path and the
resource path (without the resource)

http://my_server:8080/convertigo/projects/my_project/

connector=my_connector,context=my_context.siteclipper/http/

remote_host,18080/remote/path/remote_resource
A - 6 Reference Manual - CEMS 7.2.0

Chapter "Appendixes"
Convertigo paths variables - Usable symbols
 $tail_path$ =

"/convertigo/projects/my_project/

connector=my_connector,context=my_context.siteclipper/http/

remote_host,18080/remote/path"

All these symbols don't contain the convertigo host
("my_server:8080") and never contain trailing slash.
A - 7

Chapter "Appendixes"
Legacy emulator actions table
A.4 Legacy emulator actions table

An action is a special keystroke that an emulator can execute as ENTER or SOMMAIRE. This

appendix contains the list of the valid emulator actions Convertigo can send to Javelin

emulator, depending on the emulator type.

Table A - 4: Videotex emulator - Actions table

Description Code

Suite KSuite

Sommaire KSommaire

Guide KGuide

Répétition KRepetition

Annulation KAnnulation

Correction KCorrection

Retour KRetour

Envoi KEnvoi

Connexion/Fin KCnxFin

Table A - 5: VT220 emulator - Actions table

Description Code

F1 F01

F2 F02

F3 F03

F4 F04

F5 F05

F6 F06

F7 F07

F8 F08

F9 F09

F10 F10

F11 F11

F12 F12

Table A - 6: Bull emulator - Actions table

Description Code

FKCx [1..12] FKCx

Right arrow RIGHT

Left arrow LEFT

Up arrow UP
A - 8 Reference Manual - CEMS 7.2.0

Chapter "Appendixes"
Legacy emulator actions table
Down arrow DOWN

Delete active partition CLEARAP

Delete end of partition CLEAREP

Initialize active partition INITAP

Initialize two partitions INITBP

Partial initialization INITPA

Insert line INSLINE

Delete line SUPLINE

Delete end of line ERAEOL

Move cursor to begin of line CURBOL

Move cursor to begin of map CURHOME

Delete character DELCHAR

Insert character INSCHAR

Tabulation TAB

Back tabulation BTAB

Insert tabulation INSTAB

Delete tabulation CLRTAB

Baskspace BS

Total transmission XMITALL

Transmission XMIT

Break BREAK

Table A - 7: IBM emulator - Actions table

Description Code

PAx [1..3] KEY_PAx [1..3]

SysReq KEY_SYSREQ

Enter KEY_ENTER

Attn KEY_ATTN

PFx [1..24] KEY_PFx [1..24]

Right arrow KEY_CURRIGHT

Left arrow KEY_CURLEFT

Up arrow KEY_CURUP

Down arrow KEY_CURDOWN

Backspace KEY_BACKSP

Tabulation KEY_TAB

Back tabulation KEY_BACKTAB

Table A - 6: Bull emulator - Actions table (...)

Description Code
A - 9

Chapter "Appendixes"
Legacy emulator actions table
New line KEY_NEWLINE

Move cursor to begin of map KEY_HOME

Insert KEY_INSERT

Delete KEY_DELCHAR

Reset KEY_RESET

Duplication KEY_DUP

Field mark KEY_FLDMRK

Delete end of line KEY_ERASEEOF

Delete entry KEY_ERASEINPUT

Current selection KEY_CURSEL

Clear KEY_CLEAR

Table A - 7: IBM emulator - Actions table (...)

Description Code
A - 10 Reference Manual - CEMS 7.2.0

	Introducing the Reference Manual
	1.1 Introduction
	1.2 Opening a sample project from the Studio

	Convertigo Objects
	2.1 Common
	2.1.1 Main objects
	Project
	Test Case
	Style sheet
	Pool

	2.1.2 Variables
	Requestable variables
	Request single-valued variable
	Request multi-valued variable
	HTTP single-valued variable (Requestable variables)
	HTTP multi-valued variable (Requestable variables)

	Statement variables
	HTTP single-valued variable (Statement variables)
	HTTP multi-valued variable (Statement variables)

	Step variables
	Call single-valued variable
	Call multi-valued variable

	Test Case variables
	Test single-valued variable
	Test multi-valued variable

	2.1.3 References
	Schema references
	Import XSD schema
	Import WSDL schema
	Include XSD schema
	Import Project schema

	Web Service references
	Import web service

	2.2 Mobile Application
	2.2.1 Main objects
	Mobile application

	2.2.2 Platforms
	Mobile Platforms
	Android
	BlackBerry
	BlackBerry 10
	iOS
	Windows 8
	Windows Phone 7
	Windows Phone 8

	2.3 Sequencer
	2.3.1 Main objects
	Generic Sequence

	2.3.2 Steps
	Flow control steps
	jIf
	jIfThenElse
	IfExist
	IfExistThenElse
	IfIsIn
	IfIsInThenElse
	jWhile
	jDoWhile
	Iterator
	jIterator
	Return (Sequencer)
	jBreak
	Serial
	Parallel
	IfFileExists
	IfFileExistsThenElse

	Javascript steps
	Sequence JS
	jSource
	jSimpleSource
	jException

	XML steps
	Attribute (Sequencer)
	jAttribute
	Copy
	Sort
	Complex
	Error structure
	Element
	jElement
	Split
	Transform
	Count
	Concat
	Date/Time
	Generate dates

	Convertigo request steps
	Call Transaction
	Call Sequence

	File management steps
	Read XML
	Read CSV
	Write XML
	Write CSV
	Write binary from Base64
	Copy file
	Duplicate file
	Move file
	Rename file
	Delete file
	Create directory
	List directory

	HTTP session management
	Set authenticated user
	Get authenticated user
	Remove authenticated user
	Get from session
	Set in session

	Others
	Input variables
	SMTP send
	Push Notifications
	Remove context
	Process execute
	Log (Sequencer)
	Hash code

	2.4 SAP
	2.4.1 Main objects
	SAP connector
	SAP transaction
	SAP logon transaction

	2.5 SQL
	2.5.1 Main objects
	SQL connector
	SQL transaction

	2.6 CICS
	2.6.1 Main objects
	CICS connector
	CICS transaction

	2.7 Web services
	2.7.1 Main objects
	HTTP connector
	Proxy HTTP connector
	HTTP transaction
	XML HTTP transaction
	JSON HTTP transaction

	2.8 Web
	2.8.1 Main objects
	HTML connector
	HTML transaction
	HTML screen class

	2.8.2 Criteria
	XPath
	URL (Web)

	2.8.3 Extraction rules
	Web clipping extraction rules
	Web Clipper
	Add link
	Add button
	Add text
	Add image
	Delete nodes

	Data extraction rules
	Node
	Node list
	Record (Web)
	Table (Web)
	Text
	HTTP headers
	Page URL
	Print screen

	2.8.4 Statements
	Handler statements
	Handler
	Screen class entry handler
	Screen class exit handler
	Default entry handler
	Default exit handler
	Function

	Flow control statements
	Container (Web)
	If
	IfThenElse
	While
	Do while
	Return (Web)
	Break
	Call function
	IfXpathExists
	IfXpathExistsThenElse

	Javascript statements
	Transaction JS

	User input control statement
	Key action
	Input HTML set value
	Input HTML set selected
	Input HTML set checked
	Mouse action
	Mouse action advanced
	Create event
	Input HTML set file

	Browser control statements
	Credentials
	Browser property change
	Navigation bar
	Tab management
	Cookies Get
	Cookies Add
	Adopt client cookies
	Inject JS in browser
	Get URL
	Get attachment

	Others
	HTTP upload request
	HTTP request
	Exception
	Get nodes
	Get text
	Context Get
	Context Set
	Context Add text node
	Log (Web)
	Wait synchronization
	Continue with Site Clipper
	Recorder for Site Clipper

	2.9 Legacy
	2.9.1 Main objects
	Javelin connector
	Javelin transaction
	Javelin screen class
	Default block factory

	2.9.2 Criteria
	Emulator technology
	Empty screen
	Find string
	Regular expression (Legacy)

	2.9.3 Extraction rules
	Presentation
	Style of blocks
	Container (Legacy)

	Common GUI components
	Choice
	Commands
	Field/Text
	Fields for VT emulators
	Date
	Panel
	Separator
	Record (Legacy)
	Table (Legacy)
	Button
	Image

	SNA GUI components
	SNA commands
	AS400 menu
	Subfile
	5250 extended objects

	VDX GUI components
	Videotex commands
	Edit field
	Menu

	Block management
	Merge blocks
	Delete blocks
	Split block
	Trim spaces
	Move blocks

	Text handling
	Letter case
	Replace text
	Translate text

	Others
	Tag name
	Attribute (Legacy)
	Split string to table

	2.10 SiteClipper
	2.10.1 Main objects
	Site Clipper connector
	Site Clipper transaction
	Site Clipper screen class

	2.10.2 Criteria
	Request criteria
	URL (SiteClipper)
	Request header

	Response criteria
	MIME type
	Regular expression (SiteClipper)
	Response header
	Status-Code

	2.10.3 Rules
	Request rules
	Add request header
	Modify request header
	Remove request header
	Remove request cache headers
	Request JS

	Response rules
	Response JS
	Add response header
	Modify response header
	Remove response header
	Replace string
	Script injector
	CSS injector
	Rewrite location header
	Rewrite absolute URL
	Client instruction set value
	Client instruction set checked
	Client instruction click
	Remove response cache headers

	JavaScript Objects APIs
	3.1 Javelin object javadoc
	3.1.1 Fields detailed list
	3.1.2 Methods detailed list

	3.2 Context object
	3.2.1 Context general presentation
	Definition
	Identification
	Context object

	3.2.2 Context API documentation
	Fields detailed list
	Methods detailed list
	Interesting methods in Context fields

	Interfaces to Convertigo
	4.1 HTTP protocol interface to Convertigo
	4.1.1 Convertigo URLs
	General process
	Convertigo requesters

	4.1.2 Convertigo reserved parameters
	Engine reserved parameters
	Weblib reserved parameters

	4.2 Web service interface to Convertigo
	4.2.1 SOAP web services
	4.2.2 REST web services
	4.2.3 Context state conservation

	Convertigo Templating Framework
	5.1 Convertigo Templating Framework presentation
	5.1.1 Objectives
	5.1.2 Templating system

	5.2 Launching a Convertigo requestable
	5.2.1 C8O call - Calling transactions or sequences
	Requestable call format
	Requestable call and Variables

	5.2.2 Call mode
	5.2.3 Call condition
	5.2.4 Immediate action and call
	5.2.5 Local cache on calls
	5.2.6 Non C8O-requestable calls

	5.3 Listening for a C8O requestable response
	5.3.1 Listener concept
	5.3.2 Listen condition
	5.3.3 Data accumulation

	5.4 HTML templating
	5.4.1 Different types of patterns
	Templating patterns
	Selecting patterns

	5.4.2 Simple templating
	5.4.3 Nested listeners
	5.4.4 Conditional templating
	CTF If
	Negative if
	Several conditions

	5.4.5 Iterative templating
	5.4.6 Nested iterations
	5.4.7 References use
	5.4.8 Late rendering
	5.4.9 Before rendering callback
	5.4.10 After rendering callback
	5.4.11 Inline templating

	5.5 Routing
	5.5.1 Presentation
	5.5.2 Routing table

	Internationalization framework
	6.1 Convertigo Internationalization Library
	6.1.1 Objectives
	6.1.2 Translation
	6.1.3 Project architecture

	6.2 Dictionary content
	6.3 Translating
	6.3.1 Translating HTML
	6.3.2 Dynamically translating string or fragment in JavaScript
	Translating string
	Translating HTML fragment

	6.4 Enable I18N and language configuration
	6.5 Language detection and configuration
	Automatic language detection
	Manual language configuration
	General principle of language detection

	Appendixes
	A.1 Keycodes table
	A.2 Date format - Usable symbols
	A.3 Convertigo paths variables - Usable symbols
	A.4 Legacy emulator actions table

