
CONVERTIGO SDK
THE ULTIMATE CLIENT MOBILE API FOR CONVERTIGO MBAAS

WHY CONVERTIGO SDK ?

 Abstracts Mobile app developer from protocol complexity

 Gives simple cross-platform API to access Convertigo
MBaaS services

 Brings additional out of the box functionalities

 Local Cache

 Enhanced Communication Cryptography

 Session management

 Automatic UI Thread management

 Mobile activity traced on Server.

 Error management

 Optional FullSync off line data managment

ABSTRACT THE DEVELOPPER FROM PROTOCOL COMPLEXITY

 Mobile applications usually accesses services though
REST/JSON protocols.

 This access code must be written for each Mobile app,
causing technical debt , preventing code sharing and
useless coding time.

 Convertigo SDK simplifies all that by a providing a very
simple API:

 C8O.CallJSON(“project.service”, “key”, “value”);

 All HTTP(S)/REST/JSON is done automatically

 JSON objects are automatically created

 Variables are automatically passed as key/values to
sequences variables

DATA AUTOMATICALLY RETURNED AS JSON OBJECTS

 No use to parse JSON yourself !

 Data will be returned automatically as a JSON
object you can use with your Java, Objective-
C, Swift or C# code.

 Calls will be done automatically in
asynchronous mode to prevent blocking UI
Threads

 Callbacks will be called when data is ready so
you can update your UI.

LOCAL CACHE

 Automatic local cache management

 Stores local responses from the server in a
local mobile database

 Cache policy and Time to live can be
configured at each call

 If a call to the same data is done within
the time to live, the data will be retrieved
automatically from the local database even
if network is not present.

 Calling Sample

c8o.CallJSON(“myproject.myservice”,

“__localCache”, {

“enabled”:true,

“policy”:”priority-server”,

“ttl”:86400000

}

);

 This code will call ‘myservice’ sequence
from ‘myproject’ and store data in local
mobile cache for 86400000 mseconds.

SESSION MANAGEMENT AND ENHANCED COMMUNICATION
CRYPTOGRAPHY

 SDK gives automatic SSL/TLS secured
connections

 Client certificate support

 Authentication Cookies (SAML, Other) Support

 Optional Enhanced Cryptography by over-
ciphering sent data to Convertigo MBaaS
server. Cipher is done using AES256
encryption with Session specific Private key
exchanged when session is established.

 Session Management is automatic. The SDK
will maintain a Client session with MBaaS
server with no need of managing session
cookie manually.

 Sample code (Java Android)

C8O c8o = new C8O(“https://myserver/convertigo/projects/myproject”,

new c8oSettings().

setTrustAllCertificates(true). //Trust self signed certs

setTimeout(10000). // Cnx timeout

setUseEncryption(true). // use over-ciphering

addCookie("custom1", "value1"). // use custom cookie 1

addCookie("custom3", "value3") // use custom cookie 2

);

 This code will establish a SSL session with a
Convertigo MBaaS server with over-ciphering and
custom cookies.

https://myserver/convertigo/projects/myproject

ASYNC CALLS AND UI TREAD MANAGEMENT

 In all Mobile OS calls to the
network should be done
asynchronously to prevent
blocking the UI thread.

 This work is done automatically
by the SDK

 A promise API handles async
callbacks and can automatically
switch to UI threads to enable
programmers to update the UI
with data returned from the
MBaaS Server.

 Sample code (Java Android)
c8o.callJson(“project.sequence”).

thenUI(new C8oOnResponse<JSONObject>() {

@Override

public C8oPromise<JSONObject>

run(JSONObject response, Map<String, Object> parameters) throws Throwable {

// Update UI here

………

}

});

 This code will call asynchronously the “sequence” in project
“project” and when the data is returned, will execute the
C8oOnResponse handler in the UI thread giving the opportunity
to update the UI.

SERVER SIDE EVENT LOG MANAGEMENT

 Monitor on Convertigo Server all
Mobile client activity

 Any event on the client side can be
logged and centralized in the
server.

 Log Levels can be set dynamically
at run time by the server admin

 Client logs can be searched, filtered
by device ids, or any other criteria
using the Convertigo server admin
console.

 Simple cross-platform API to log an
event.

 Sample code (Java Android)

c8o.log(C8oLogger.DEBUG, “User has clicked subscribe button”);

 This code will log the message to the server
according to the log level. Logs levels can be
configured dynamically on the Server console.

ERROR MANAGEMENT

 HTTP protocol errors (500, 404) and network errors are automatically handled by an error handlers. No
need to handle these errors manually.

 Functional errors are received as standard JSON objects

 Programmer can take decisions by looking JSON object keys.

 Network presence is automatically handled to manage local cache

OPTIONAL FULL SYNC MANAGEMENT

 SDK can also mange all the FullSync
Synchronization on an local NoSQL database

 Calls the local database follows the
c8o.CallJSON api with special “requestables”

 “fs://database.get” to get an object from the
local database named “database”

 “fs://database.put” to put an object in the local
database named “database”

 “fs://database.view” to query a view from the
local database named “database”

 “fs://database.sync” to synchronize pull all the
data for this user from Convertigo MBaaS to
this database and to push all local data back to
server.

 …

SDK IS AVAILABLE FOR ALL MOBILE CLIENT PLATFORMS

iOS

Android

Windows Phone

Windows Universal App

Objective-C
(Xcode)

Swift
(Xcode)

C#
(Xamarin)

Java
(Android Studio)

C#
(Xamarin)

C#
(Xamarin)

C#
(Xamarin)

Languages (IDE)Platform

fs FullSync Available in SDK 2.0

Windows WPF (Desktop)

FullSync Plannedfs

C#
(Visual Studio)

C#
(VisualStudio)

C#
(VisualStudio)

fs
fs

fs

fs

fs

fs

fs fs

